Volume – 01, Issue – 03, June – 2016, PP – 118-123

Operations Decisions for a small Bakery shop with high Seasonal Demand

DINESH KUMAR¹ & SRIDHAR K²

¹Scholar, Chhatrapati Shivaji Institute of Technology, Durg, Chhattisgarh, India ²Professor in Mechanical Engineering, Chhatrapati Shivaji Institute of Technology, Durg, Chhattisgarh, India

Abstract: The abnormal economic conditions, global competition, customer's aspiration has a major impact on the performance of the enterprises. Operation decisions are essential for proper planning in order to achieve the goal of the enterprise. In this Project, an attempt to an attempt is to make to arrive the operation decisions in a Small Scale enterprise. The project consists of three modules. In the first module, demand forecast is performed with exponential smoothing method. Based on the current period demand, forecast is completed. The accuracy of forecasting is identified by the tracking Signal. Accordingly, smoothing constant is adjusted in exponential smoothing method to minimize the forecast error. This dynamic forecast method is suitable for the bakery products where demand fluctuations are more. From the demand forecast, aggregate demand is projected and aggregate production plan are evaluated to find the plan which will give the optimal cost. Aggregate planning methodology is included in the module two.

Keywords: Aggregate Planning, Exponential smoothing method, Tracking Signal.

I. INTRODUCTION

Forecasting is an activity to calculate or predict some future event or condition, usually as a result of rational study or analysis of opposite data. Forecasting is widely used today in many fields, particularly in industry, marketing, economic system and finance. Such as in expendable product manufacturing, an accurate prediction of the future demand is very helpful in providing exact inventory, reducing transportation costs, then increasing profit. Forecasting acts important role to predict future according to past data. Forecast methods may be broadly classified into qualitative and quantitative techniques. Qualitative methods are intuitive, largely educated guesses that may or may not depend on the past data. Quantitative methods use mathematical or statistical models to generate a reasonable prediction from the information of the past.

II. LITERATURE REVIEW

According to Amrit Pal Singh [1] the forecasting method will be selected on the basis of forecast error. Lesser the forecast error, the more accurate forecasting method and the specific purpose of this study was to identify the best quantitative forecasting method, based on level of accuracy and the ease of use in practice, to forecast demand of the Boot for Shoe Industry. James W. Taylor [2] Estimating the parameters of the exponential smoothing methods by minimizing the sum of absolute errors were preferable to minimizing the sum of squared errors. Mansoureh Farzam Rad [3] deals with aggregate production planning of the products in Hafez Tile factory during one year. In this factory, the manager seeks 3 goals in determining the optimal production rate. These goals are minimizing production cost, the maximum use of production capacity of factories and also providing the market 'demands. Nur Adilah Abd Jalil [4] investigated five exponential smoothing methods for forecasting the double seasonal (daily and weekly) electricity load demand. The best method found was the HWT exponential smoothing method based on the MAPE results. Sanjoy Kumar Paul [5] overcome the problems are raised to assign the value of exponential smoothing constant. In this paper, this problem is solved by determining the optimal value of exponential smoothing constant. Wan-I Lee [7] study proposes using Logistic Regression, Moving Average and Back-Propagation Neural Network methods for sales models designed to predict daily fresh food sales. Found that the correct percentage obtained by LR to be better than that obtained by the BPNN and MA models.

III. PROBLEM IDENTIFICATION

The data are collected from JAYAKA BAKERY. It is a small bakery shop in Durg Chhattisgarh especially famous for Bread, Toast, Cake, Snacks, Cream roll & cold drinks. They perform task in manually manner. Hence for each bakery shop it is necessary to maintain to smooth flow of production to full fill customer response. Also require the excess knowledge of production activity & capacity Planning. Sometimes

Volume – 01, Issue – 03, June – 2016, PP – 118-123

also suffer from uncontrollable production loss. & problem face that which plan is more suitable to achieve optimal value. hence to achieve these objectives Aggregate planning concept has used to achieve the objectives.

IV. METHODOLOGY

Exponential smoothing forecasting method

The new forecast for next period (period t) will be calculated as follows:

New forecast = Last period's forecast + α (Last period's actual demand – Last period's forecast) $F_t = F_{t-1} + \alpha (D_{t-1} - F_{t-1})$

Where α is a smoothing coefficient whose value is between 0 and 1. The preferred range for α is from 0.1 to 0.3.

Table 2 is showing Consumption Value of Items from September to October.

Aggregate planning

Aggregate planning concept used for capacity planning. Its include three plan-

1. Vary the manpower size.

2. Use over time and idle time.

3. Use inventory and stock out based on constant 11 workforces.

After applying all three plans select the most suitable plan according to optimum value. Here table 1 is showing the cost structure related workers. And Table 3 is showing the Forecast Value of Items from September to October

Table 1 Different Cost Structure related Workers

S.NO	Particular	Value
1	No. of worker	11
2	labour cost	300Rs/day
3	Hiring cost	400Rs/day
4	Lay off cost	450Rs/day
5	Inventory cost	2Rs/Product
6	Overtime cost	30Rs/hr
7	Working hours	7Hrs/day
8	Idle time cost	20Rs/hr

Table 2 Consumption Value of Items from September to October

Date	Bread	Toast	Cake	Cream roll	Date	Bread	Toast	Cake	Cream roll
01/09/2015	94	109	49	45	01/10/2015	75	146	40	31
02/09/2015	81	124	49	41	02/10/2015	73	117	40	32
03/09/2015	96	122	42	33	03/10/2015	93	140	46	42
04/09/2015	98	132	31	34	04/10/2015	92	150	48	47
05/09/2015	100	140	35	47	05/10/2015	76	131	31	36
06/09/2015	109	150	45	50	06/10/2015	104	124	38	45
07/09/2015	73	114	36	39	07/10/2015	95	118	40	30
08/09/2015	79	134	30	32	08/10/2015	84	142	39	37
09/09/2015	107	133	31	49	09/10/2015	91	129	37	40
10/09/2015	76	108	33	43	10/10/2015	86	127	49	37
11/09/2015	103	106	43	39	11/10/2015	73	146	48	42
12/09/2015	92	145	45	48	12/10/2015	80	120	32	32
13/09/2015	110	150	43	39	13/10/2015	75	138	32	35

14/09/2015	73	117	32	31	14/10/2015	77	110	33	30
15/09/2015	88	129	41	30	15/10/2015	80	119	32	29
16/09/2015	74	111	36	35	16/10/2015	87	128	36	32
17/09/2015	90	130	35	39	17/10/2015	72	120	33	32
18/09/2015	70	113	34	31	18/10/2015	74	110	35	31
19/09/2015	101	140	44	45	19/10/2015	73	120	33	36
20/09/2015	103	145	45	45	20/10/2015	75	120	34	33
21/09/2015	75	130	37	33	21/10/2015	71	122	35	29
22/09/2015	73	148	43	32	22/10/2015	70	100	33	31
23/09/2015	86	127	46	42	23/10/2015	106	128	35	48
24/09/2015	71	120	32	30	24/10/2015	85	123	39	47
25/09/2015	102	107	49	48	25/10/2015	110	155	45	45
26/09/2015	87	140	46	45	26/10/2015	101	117	48	35
27/09/2015	106	142	50	45	27/10/2015	86	108	39	34
28/09/2015	77	130	32	30	28/10/2015	80	140	34	37
29/09/2015	81	141	39	38	29/10/2015	86	116	48	40
30/09/2015	76	112	36	36	30/10/2015	74	126	39	48
					31/10/2015	105	135	42	47

Volume – 01, Issue – 03, June – 2016, PP – 118-123

Table 3 Forecast Value of Items from September to October

Date	Bread □ =.328	Toast □=.3	Cake □=.16	Cream roll □=.3	Date	Bread □=.328	Toast □=.3	Cake □=.16	Cream roll □=.3
01/09/2015	88	140	41	37	01/10/2015	82	128	40	38
02/09/2015	90	131	42	39	02/10/2015	80	133	40	36
03/09/2015	87	129	44	40	03/10/2015	78	128	40	35
04/09/2015	90	127	43	38	04/10/2015	83	132	41	37
05/09/2015	93	129	41	37	05/10/2015	86	137	42	40
06/09/2015	95	132	40	40	06/10/2015	83	135	40	39
07/09/2015	100	137	41	43	07/10/2015	90	132	40	41
08/09/2015	91	130	40	42	08/10/2015	91	128	40	37
09/09/2015	87	131	39	39	09/10/2015	89	132	40	37
10/09/2015	94	132	37	42	10/10/2015	90	131	39	38
11/09/2015	88	125	37	42	11/10/2015	88	130	41	38
12/09/2015	93	119	38	41	12/10/2015	83	135	42	39
13/09/2015	93	127	39	43	13/10/2015	82	130	40	37
14/09/2015	99	134	40	42	14/10/2015	80	133	39	36
15/09/2015	90	129	38	39	15/10/2015	80	126	38	34
16/09/2015	90	129	39	36	16/10/2015	80	124	37	33
17/09/2015	85	123	38	36	17/10/2015	82	125	37	33
18/09/2015	87	125	38	37	18/10/2015	79	124	36	32
19/09/2015	81	122	37	35	19/10/2015	78	119	36	32

www.ijlera.com

20/09/2015	88	127	38	38	20/10/2015	77	120	40	33
21/09/2015	93	133	39	40	21/10/2015	76	120	39	33
22/09/2015	87	132	39	38	22/10/2015	74	120	38	32
23/09/2015	83	137	40	36	23/10/2015	73	115	37	32
24/09/2015	84	134	41	38	24/10/2015	82	118	37	37
25/09/2015	80	130	39	36	25/10/2015	89	120	37	40
26/09/2015	87	123	41	39	26/10/2015	94	128	39	41
27/09/2015	87	128	42	41	27/10/2015	96	126	41	39
28/09/2015	94	132	43	42	28/10/2015	93	121	40	38
29/09/2015	88	132	41	39	29/10/2015	90	126	39	38
30/09/2015	86	134	41	38	30/10/2015	89	123	41	38
					31/10/2015	85	124	40	41

Volume – 01, Issue – 03, June – 2016, PP – 118-123

Aggregating the demand from forecast obtain

Forecast is an estimate of an event which will happen in future. Demand forecast can be classified into long range, medium range and short range forecasts. The data has been collected for two month and according to the analysis of data it observed that this comes under medium range forecast. And aggregate planning uses medium range forecast. Aggregate planning is a process that follows capacity planning. The regular time production capacity may not be sufficient to cope with the demands of various products. Here table 4 is showing the specification of items.

		Bread	Toast	Cake	Cream roll	
Demand	Date	(400gm/unit)	(200gm/unit)	(200gm/unit)	(50gm/unit)	Total
1st Fortnight	01/0915-15/09/15	1378	1956	609	608	4551
2nd Fortnight	16/09/15-30/09/15	1300	1946	602	577	4425
3rd Fortnight	1/10/15-15/10/15	1280	1977	613	568	4438
4th Fortnight	16/10/15-31/10/15	1331	1958	624	579	4492

Aggregate Plans

Three aggregate plans are proposed.

Plan1: Vary the workforce size to accommodate demand.

Plan2: Maintain a constant workforce of 11, and use over time and idle time to fulfill demand.

Plan3: Maintain constant workforce of 11, and build inventory or incur stock out cost.

All three plans has showed with the help of table from 5 to 4.19 where tables showed plan1, plan2, and plan3 respectively.

		1 st	2nd	3 rd	4th	
S.NO.	Particular	Quarter	Quarter	Quarter	Quarter	Total
1	Production required (unit)	4551	4425	4438	4492	
2	Production hrs required	1517	1107	1110	1123	
	Hrs available per worker at					
3	7hrs/day	91	105	98	105	
4	No. of Worker required	13	11	12	11	

 Table 5 Plan 1(Vary the workforce)

International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 2455-7137

5	No. of Worker hired	2	-	1	-	
6	Hiring cost (Rs.)	800	-	400	-	1200
7	worker laid off	-	4	-	2	
8	laid off cost(Rs.)	-	1800	-	900	2700

Volume – 01, *Issue* – 03, *June* – 2016, *PP* – 118-123

		1 st	2nd	3 rd	4th	
S.NO.	Particular	Quarter	Quarter	Quarter	Quarter	Total
1	Production required(unit)	4551	4425	4438	4492	
2	Production hrs required	1517	1107	1110	1123	
3	Hrs available per worker at 7hrs/day	91	105	98	105	
4	No. of hrs available	1001	1155	1078	1155	
5	No. of over time(Hrs)	136	-	32	-	
6	Over time premium(Rs.)	4080	-	960	-	5040
7	No. of idle time(Hrs)	-	48	-	32	
8	idle time cost (Rs.)	-	960	-	640	1600

Table 6 Plan 2(Use over time and idle time)

Table 7 Plan 3(Use inventory and stock out on constant 11 workforces)

		1 st	2nd	3 rd	4th	
S.NO.	Particular	Quarter	Quarter	Quarter	Quarter	Total
1	Production required(unit)	4551	4425	4438	4492	
2	Production hrs required	1137	1107	1110	1123	
3	Total hrs available	1001	1155	1078	1155	
4	Unit product	4004	4620	4312	4620	
3	cumulative Production	4004	8624	12936	17556	
6	Unit short	547	-	126	-	
7	Short cost(Rs.)	3243.71	-	747.18	-	3990.89
8	Excess unit	-	195	-	128	
9	Inventory cost(Rs.)	-	390	-	256	646

V. RESULTS AND DISCUSSIONS

The cost for three plans **Plan1:** 1,200 (hiring) + 2,700(Lay off) = 3900Rs. **Plan2:** 5,040(Over time) + 1,600 (Idle time) = 6640Rs. **Plan3:** 3,990.89(stock out) + 646(Inventory) = 4636.89Rs. Hence Plan 1 is more economical.

Volume – 01, Issue – 03, June – 2016, PP – 118-123

VI. CONCLUSIONS

The selection of α value for exponential smoothing method plays a vital role for accurate demand forecast. The value of α is to be selected by tracking signal obtained. If the value of TS lies under the control limits, then the selected α value can be continued. But if the value of T.S. fall out of the control limit then it is required to change the value of α .

The selection of aggregate plan assists to performing of production activities for profit maximization. Generally we have three plans to perform the task. And aggregate planning help to selection of best plan to maintain success fully flow of production.

REFERENCES

- [1] Amrit Pal Singh, Manoj Kumar Gaur, Dinesh Kumar Kasdekar and Sharad Agrawal, A Study of Time Series Model for Forecasting of Boot in Shoe Industry, *International Journal of Hybrid Information Technology Vol.8*, *No.8* (2015), pp.143-152
- [2] James W. Taylor, *Exponential* Smoothing with a Damped Multiplicative Trend, *International Journal of Forecasting, Vol. 19*, (2003), pp. 715-725.
- [3] Mansoureh Farzam Rad1, and Hadi Shirouyehzad, Proposing an Aggregate Production Planning Model by Goal Programming Approach, a Case Study, *Journal of Data Envelopment Analysis and Decision Science*, Year 2014 Article ID: dea-00061, 13 Pages
- [4] Nur Adilah Abd Jalil, Maizah Hura Ahmad and Norizan Mohamed, Electricity Load Demand Forecasting Using Exponential Smoothing Methods, *World Applied Sciences Journal 22 (11):* 1540-1543, 2013
- [5] Sanjoy Kumar Paul, Determination of Exponential Smoothing Constant to Minimize Mean Square Error and Mean Absolute Deviation, *Global Journal of Research in Engineering Volume 11 Issue 3* Version 1.0 April 2011
- [6] Ukamaka Cynthia Orumie, and Daniel Ebong, A Glorious Literature on Linear Goal Programming Algorithms, *American Journal of Operations Research*, 2014, 4, 59-71.
- [7] Wan-I Lee, Cheng-Wu Chen, Kung-Hsing Chen, Tsung-Hao Chen, and Chia-Chi Liu, A Comparative study on the forecast of fresh food sales using logistic regression ,moving average and bpnn method, *Journal of Marine Science and Technology, Vol. 20, No. 2*, pp. 142-152 (2012)
- [8] Yasser A. Davizón, César Martínez-Olvera, Rogelio Soto3, Carlos Hinojosa and Piero Espino-Román, Optimal Control Approaches to the Aggregate Production Planning Problem, *Sustainability*, 2015.