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Strip Perception Module (SPM), which uses asymmetric kernels to capture long, narrow defects; (2) Squeeze-
and-Excitation Spatial Pyramid Pooling-Fast (SESPPF), which combines channel attention and multi-scale
pooling to refine features; and (3) Focal-Enhanced Complete Intersection over Union (FECloU) Loss, which
weights hard-to-detect cases to improve bounding box accuracy and defect localization. Evaluated on a textile
defect dataset, the experimental results show that YOLOV7-Tinier-SPAF performed better than the Yolov7-Tiny
baseline both in performance and speed. Ablation studies confirm that each module works effectively: SPM
improves the detection of elongated defects by 18.6%, SE-SPPF improves features by 11.2%, and FECloU
reduces localization errors by 9.4%. It also outperforms models like YOLOv8n both accuracy and robust
regression, making it practical for factory textile quality control.

Keywords: Fabric defect detection, lightweight object detection, YOLOV7-Tinier, strip perception module,
daptive pooling, focal-enhanced CloU loss.

I. Introduction

The textile industry struggles to maintain product quality due to defects like oil stains, holes, and
cracks—these flaws reduce usability and profitability. Manual inspection, the traditional method, is inconsistent,
subjective, and error-prone under high production rates [1]. To address this, automated systems leveraging
computer vision and deep learning have emerged as a superior alternative, offering scalable and objective
quality control [1].

Early defect detection relied on handcrafted features (e.g., Gabor filters, wavelet transforms) [1]. While
effective in controlled environments, these methods fail with complex fabric textures, variable lighting, and
elongated defects (e.g., seams, streaks). For instance, statistical texture analysis often confuses subtle defects
with background noise, resulting in humerous missed detections in real-world factories [2]. Deep learning—
particularly convolutional neural networks (CNNs)—revolutionized industrial inspection. Models like Faster R-
CNN [2] and SSD [3] improved accuracy but were computationally intensive for embedded systems. Recent
works, including Nasim et al.’s factory-adaptable framework [1] and Shehzad et al.’s attention-based YOLOv7
[4], enhanced robustness but still faced two limitations: (1) poor detection of long, strip-like defects, and (2)
excessive computational resource consumption.

To overcome these challenges, lightweight CNNs were developed. YOLO variants such as YOLOv4-
Tiny and YOLOV7- Tiny balance speed and accuracy for industrial applications [5]. However, they still struggle
with small or elongated defects due to limited adaptive receptive fields and ambiguous feature discrimination.
Current lightweight defect models also lack integration with design and production systems, impeding rapid
issue resolution.

Li et al. [6] explored collaborative quality control for textiles but their framework lacked a fast, accurate
lightweight model suitable for on-site edge deployment. Our proposed YOLOv7-Tinier-SPAF addresses these
dual gaps: it retains the lightweight efficiency critical for factory use (155 FPS) while integrating a collaborative
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deployment system that connects defect detection to design and production workflows—a key advancement
over prior approaches.

Wang et al. [7] developed an edge-cloud collaborative system for real-time electronics component
inspection, demonstrating how distributed computing enhances industrial quality control. Our work extends this
concept to the textile industry with two innovations: (1) maintaining 155 FPS inference speed (vs. 80 FPS in
Wang et al.’s work [7]), aligning with the fast-paced nature of fabric production; (2) integrating the Strip
Perception Module (SPM) to target elongated defects e.g., cracks, cut—a critical enhancement absent in
electronics focused designs. This customization ensures our collaborative system better addresses the unique
challenges of textile defect detection. The main contributions of this work are as follows:

e We propose an enhanced lightweight model based on YOLOvV7-Tinier, incorporating the SPM, SE-SPPF,
and FECloU loss for fabric defect detection.

o We design the SPM to effectively detect and localize elongated defects—a capability lacking in
conventional convolutional kernels.

e We introduce the SE-SPPF block to improve multi-scale feature representation.

o We develop the FECIloU loss to prioritize hard-to-detect defects, enhancing localization accuracy and
stability.

I1. Related Work
A. Fabric Defect Detection

Fabric defect detection is critical for textile quality control. Early methods relied on handcrafted features
(e.g., Gabor filtering, wavelet transforms) but struggled with variations in fabric texture, fluctuating lighting
conditions, and elongated defects such as streaks [1]. Deep learning has since advanced this field: Zhang et al.
[2] used Faster R-CNN to achieve precise defect localization, while Chen et al. [3] developed an SSD-based
model for faster detection. However, both models operated at only 20-35 FPS—too slow for real-world factory
production lines. Recent research has shifted focus to addressing industrial needs: Nasim et al. [1] built a
CNNYOLDO pipeline capable of handling various fabric types but did not optimize for lightweight deployment
or the detection of elongated defects. Li et al. employed U-Net for strip defect segmentation, yet prioritized
accuracy over speed (achieving only 30 FPS), rendering it unsuitable for real-time inspection.

Notably, recent studies relevant to textile defect detection provide key context for our work: Our earlier
research (Shehzad et al. [4])—which focused on fine-tuning YOLOv7 for fabric defect detection—Iaid a
foundation for deep learning based inspection but failed to address collaboration between design, production,
and quality control teams [4].

B. Lightweight Object Detection

The demand for embedded industrial systems has driven the development of lightweight neural networks,
which balance detection accuracy and computational efficiency. Core architectures in this space include
MobileNet (which uses depth wise separable convolutions), ShuffleNet (leveraging channel shuffling), and
GhostNet (generating ghost features to reduce parameter counts)—all of which are foundational for edge
deployment.

Within the YOLO family, Tiny variants (e.g., YOLOv4- Tiny, YOLOv5s, YOLOvV7-Tiny) are industry
favorites due to their favorable speed-accuracy tradeoff. YOLOv7-Tinier [5] further refined this balance by
integrating ELAN and DSPPFCSPC modules, reducing parameter counts by 30% compared to YOLOvV7-Tiny
while maintaining 155 FPS. However, lightweight models often lack adaptable receptive fields, leading to poor
performance on small or elongated defects. For example, MobileNet-YOLO hybrid model achieved 120 FPS but
suffered a 12% mAP drop for strip defects (e.g., cracks) compared to heavier models—nhighlighting the need for
domain-specific optimizations, which our work addresses.

C. Improved Pooling and Loss Functions

The combination of loss and elimination mechanisms is critical for improving defect detection
performance, particularly in challenging samples. Spatial Pyramid Pooling (SPP) effectively captures multi-
scale features, and its faster variant (SPPF) optimizes inference speed for real-time models—yet neither
incorporates channel attention, resulting in redundant feature learning when processing complex fabric textures.
SENet [8] addressed this limitation by weighting feature channels based on their importance, inspiring hybrid
designs like SESPPF [9] that enhances both spatial and channel interactions for industrial defect detection.

For bounding box regression, loU-based loss functions dominate the field: GloU and DIloU improve
upon vanilla loU, while CloU [10] adds aspect ratio alignment (now a standard in YOLO architectures).
However, CloU treats all samples equally, failing to prioritize hard-to-detect cases e.g., small or low contrast
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defects-a limitation also noted in recent industrial YOLOvV7 adaptations, which replace CloU with alternative
losses (e.g., SIOU) to address misalignment between prediction and ground-truth boxes [11]. Lin et al. [12]
introduced focal loss to emphasize challenging samples; extensions such as Focal-EloU later applied this
concept to loU-based losses. Our proposed Focal-Enhanced CloU (FECIloU) builds on this work by dynamically
weighting regression errors to target elongated fabric defects.

D. Comparison with Related Methods

Existing fabric defect detection methods face inherent tradeoffs: some prioritize accuracy but lack real-
time speed, while lightweight models struggle with small or elongated flaws. Many also fail to balance edge
deployability with robust detection of common textile defects. Our framework addresses these gaps by building
on lightweight architectures to unify speed, accuracy, and specialized handling of hard-to-detect fabric flaws—
representing a key improvement over current solutions (see Table 1).

Table I: Synthesis Matrix of Fabric Defect Detection

Work Method/Backbone Key Contribution Speed Limitation
(FPS)

Zhang et al. (2019) [2] Faster R-CNN Precise defect localization ~20 Too slow for real-time factory lines

Chen et al. (2020) [3] SSD-based One-stage textile detection ~35 Weak performance on small/elongated
defects

Li et al. (2023) [12] U-Net + CNN Strip defect segmentation ~30 Segmentation-only; slow for detection

tasks

Zhao et al. (2022) [13] MobileNet-YOLO Lightweight fabric inspection ~120 12% lower mAP on elongated defects

Nasim et al. (2024) [1] CNN + YOLO Factory-adaptable detection ~50 Not lightweight; poor strip defect

pipeline detection

Liu et al. (2021) [14] YOLOV5 Baseline textile YOLO model ~70 High parameter count; notedge
deployable

Wang et al. (2022) [5] YOLOvV7-Tinier ELAN/DSPPFCSPC for speed ~155 Low accuracy on
small/elongateddefects

Li et al. (2024) [6] CNN + edge-cloud Collaborative textile quality ~40 Lacks lightweight, fast
control detectioncapability
Wang et al. (2025) [7] Edge-cloud system Collaborative electronics ~80 Not optimized for textiles/strip defects
inspection
This Work YOLOv7-Tinier + Strip-aware detection; robust ~155 Balanced accuracy/
SPM + SE-SPPF + FECloU regression speed/edgedeployability

I11.Proposed Method
The proposed approach aims to improve fabric defect detection in real manufacturing environments by
enhancing the YOLOv7 framework. This is achieved through architectural adjustments, loss function
improvements, and advanced data augmentation techniques. The complete process is shown in Fig. 1.

A. Workflow Overview
Our pipeline includes four key stages:
e Dataset Preparation: The FD Dataset was processed and labeled in YOLO format (details in Section
IV-A).
e Model Design: The base YOLOv7 model was upgraded with SPM, SE-SPPF attention component block,
and a refined loss function (FECloU).
e Training Strategy: The model was trained using advanced augmentation methods and hyperparameter
adjustments to improve robustness.
e Evaluation: The final model was evaluated against the original YOLOv7 using standard metrics
(Precision, Recall, mMAP@0.5, mMAP@0.5:0.95).
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Fig. 1: YOLOV7-Tinier-SPAF Full Architecture

B. YOLOv7-Tiny Baseline

YOLOV7-Tiny is used as the baseline because of its good trade-off between speed and accuracy. It

contains three main components:

Backbone: Based on CSPDarkNet-Tiny, the backbone uses ELAN modules [13] to improve feature
reuse and gradient flow. It captures both low-level texture details and high-level semantics with minimal
computational complexity [13].

Neck: The Neck fuses multi-scale features using a PANet-like design [14]. It includes an SPPF module
[13] to enhance the receptive field with minimal computational cost.

Detection Head: The decoupled detection head separately processes classification and box regression
[13], reducing task conflict. It predicts at three scales, allowing improved detection of both small and
large defects.

The following modules were added to the baseline YOLOvV7 to improve model performance and stability.

1)

2)

3)

Strip Perception Module (SPM): To detect long, elongated defects, the SPM uses parallel asymmetric
kernels: a 1 x 3 kernel for horizontal strips and a 3 x 1 kernel for vertical strips, in addition to a standard
3x3 convolution. This enables the network to prioritize elongated structures while still detecting general
defects such as holes.

To maintain computational efficiency, 1x1 convolutions are added before and after the
asymmetric layers to adjust channel dimensions. Residual connections are incorporated to stabilize
training.

SPM is integrated after the YOLOvV7-Tiny backbone 1/16 resolution feature map, which balances
texture detail with semantic information for strip defects.

SE-SPPF (Squeeze-and-Excitation Spatial Pyramid Pooling-Fast): To enhance the model’s ability to
detect defects of varying sizes and emphasize informative features, we introduce the SE-SPPF module.

SE-SPPF builds on the SPPF module, which captures multiscale features through max-pooling
with different kernel sizes (e.g., 5x5, 9x9). We integrate the SE attention mechanism, which performs
global average pooling over each feature channel (squeeze) and applies learned channel weights
(excitation), enabling the model to highlight important defect-related channels.

SE-SPPF is inserted at the end of the YOLOvV7-Tiny backbone, refining high-level features before
they enter the detection head. This improves multi-scale defect detection without adding significant
computational cost [8], [9], [13].

Advanced Loss Functions: Traditional regression losses such as L1 and L2 focus solely on coordinate
differences and ignore geometric relationships between bounding boxes. loUbased loss functions (GloU,
DloU, CloU) incorporate overlap, center distance, and aspect ratio [10], but treat all examples equally.
This reduces the model’s focus on challenge examples such as small or elongated defects.

Drawing inspiration from focal loss, which assigns higher weight to hard-to-classify samples [12],
focal-enhanced loU losses apply the same idea to bounding box regression. In our research, we combine
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~this concept with CloU to create FECloU, which is used alongside SPM and SE-SPPF to further improve
defect detection.

a) FECloU Formulation:
Lreciou = (1 — loU)y * Lciou Q)

Where, Lciou is the Complete loU loss. The term (1-loU)yis a focal weighting factor emphasizing hard
examples, withy = 2.

b) Advantages in Defect Detection:

This loss places greater emphasis on hard examples, stabilizes regression, and improves detection of
small and elongated defects. It minimizes localization drift for low-contrast or edge-blurred flaws—common
challenges in fabric inspection. By dynamically weighting difficult cases, it preserves the model’s lightweight
efficiency while boosting overall detection reliability.

C. Training

We trained all models using PyTorch and the YOLOV7 toolkit. The dataset followed the YOLO format
and was specified using a data.yaml file.

We used Stochastic Gradient Descent (SGD) with momentum, starting with a learning rate of 1 x 10-3.
The baseline YOLOv7-Tiny and single-module variants (+SPM, +SE-SPPF)used CloU loss, while the full
model (YOLOvV7-Tiny + SPM + SE-SPPF) used FECloU withy = 2.

To avoid overfitting and improve generalization, we applied random horizontal and vertical flips, mosaic
augmentation, and occasional grayscale conversion. The full model achieved the highest mAP@O0.5,
demonstrating that the proposed improvements enhance fabric defect detection.
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Fig. 2: Baseline YOLOv7-Tiny Training Graph.

To improve upon the baseline model, we made three key upgrades. First, the SPM was added to better
detect long and detailed defect patterns. Second, the SE-SPPF module introduced attention to focus on important
features and reduce noise. Third, we replaced the original loss with FECloU to better handle small and difficult
defects. Together, these changes improved the model accuracy, with the full version achieving the highest
MAP@0.5 score.
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Fig. 3: Full Model Training Graph.
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D. Model Works in a Team System

Our lightweight YOLOV7-Tinier-SPAF model (achieving 155 FPS for real-time inference) integrates into
a three-tier collaborative system tailored for textile factory workflows. This design supports on-site deployment
on low-end hardware, avoiding reliance on isolated detection or complex computing infrastructure.

1) Edge Devices: Edge devices such as Jetson Nano—based industrial cameras run the YOLOvV7-Tinier-SPAF
model to perform real-time defect detection during fabric production. The model excels at identifying hard-
to-detect flaws and improves the detection of elongated defects (e.g., Crack and Cutting) by 18.6%
compared to the baseline, ensuring subtle defects are not missed during continuous monitoring.

2) Cloud Server: The cloud server receives defect data including defect type, bounding box coordinates, and
confidence scores from edge devices. It stores historical defect records and generates statistical reports. The
reliability of these reports is supported by the model’s high detection accuracy; for example, it achieves
0.961 mAP@0.5 for Hole defects. If Cutting defect rates rise by 5% in a week, the cloud flags this anomaly,
helping production managers identify root causes e.g., dull cutting blades.

3) Design/Production Terminals: When the model detects 5 or more Crack defects within an hour, the design
terminal automatically generates a weaving density adjustment suggestion e.g., increasing from 20 to 22
threads/cm. Simultaneously, the production terminal sends a notification to the rolling machine operator to
check pressure settings. This cross-terminal coordination reduces defect-correction time by 30%.

4) Data Transmission & Security: Data transfer between edge devices, the cloud server, and terminals
maintains a latency below 150 ms, supporting real-time collaboration. All transmitted data is encrypted to
ensure the confidentiality and integrity of factory records.

Defectdata —» Stats & reports
4 N N N
Edge cameras Cloud Server Design/Production
(Model) (Store data) Computers
(Get Alerts)

YOLOv7-Tinier Defect data '
SPAF Hole/Cutting Real-time alerts
155 FPS

N\ J N J

& QA reports

Data flow Delay: <150ms
Fig. 4: Model Deployed in a Collaborative Team System

IV. Experimental Results
A. Experiment Setup
We used the public FD Dataset 7z [15] as the base for our fabric defect dataset. It contains 720 high-
resolution images across four defect types: Qil, Hole, Cutting, and Crack, all with bounding box and class labels
for supervised learning. To make the dataset more realistic for industrial use and to boost model robustness, we
added images from other sources (such as Roboflow and public fabric defect datasets). This increased the total
to about 2800 images, covering plain, regularly printed, and irregularly printed fabrics. We preprocessed the
dataset using the following steps:
e Annotation Conversion: All annotations were reformatted into YOLO-compatible format.
e Image Normalization: Images were resized to 640x640 pixels and normalized to improve model
convergence.
e Data Augmentation: To address class imbalance and enhance generalization, we applied rotation,
flipping, color jittering, and mosaic augmentation.

This preprocessing pipeline ensured that the dataset was standardized and suitable for training deep
learning models under realistic manufacturing conditions. The fabric defects dataset was divided into 70%
training, 15% validation, and 15% test sets to ensure balanced evaluation.
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B. Results Evaluation

Mean average precision (mAP) used as the primary evaluation metric for this study, supplemented by
precision and recall to provide a comprehensive assessment of all YOLOv7-Tiny variants. Detailed performance
data for each model configuration is presented in Table Il. The baseline YOLOv7-Tiny model achieved an
overall mMAP@0.5 of 0.832. It performed strongly in detecting Qil (0.845) and Crack (0.904) defects, but its
performance on Cutting defects was lower (0.651)—a limitation attributed to insufficient multi-scale feature
extraction capabilities.

Integrating the SPM enhanced the model ability to learn multi-scale features, with a particular focus on
improving detection for small and irregular defects. This upgrade raised the overall mMAP@0.5 to 0.882, with
notable gains in the Cutting and Crack defect classes.

Adding the SE-SPPF module further refined the model feature recalibration capabilities. This
improvement boosted detection performance for Oil and Hole defects, driving the overall mAP@0.5 to 0.903.

Finally, integrating the FECIloU loss function with the SPM and SE-SPPF modules in the full model
improved bounding box localization accuracy and overall detection performance. This combined configuration
achieved an mAP@0.5 of 0.920 across all classes, with balanced precision and recall values.

C. Precision-Recall (PR) Curves

PR curves are critical for evaluating model performance, especially in imbalanced datasets such as those
used for fabric defect detection. These curves illustrate the trade-off between precision (the accuracy of positive
defect predictions) and recall (the model’s ability to identify all true defects) across varying confidence
thresholds.

From the results, defects such as Holes exhibit high precision and recall values, indicating reliable
detection. In contrast, Cutting defects show lower values, highlighting the ongoing challenge of detecting this
defect type. PR curves help visualize these class-specific differences and the model’s overall effectiveness,
while metrics like mMAP@0.5 provide a concise summary of detection performance across all classes.

Table 11: Comparison of YOLOv7-Tiny Variants

Model Class P R mAP
BaselineY7-Tiny All 0.867 0.761 0.832
Qil 0.924 0.800 0.845
Hole 0.890 0.898 0.930
Cutting 0.681 0.569 0.651
Crack 0.973 0.778 0.904
Y7-Tiny+SPM All 0.929 0.800 0.882
Oil 0.917 0.735 0.844
Hole 0.887 0.944 0.894
Cutting 0.923 0.800 0.889
Crack 0.990 0.722 0.902
Y7-Tiny+SPM+SE-SPPF | All 0.898 0.879 0.903
Oil 0.963 0.866 0.957
Hole 0.937 0.944 0.930
Cutting 0.857 0.867 0.821
Crack 0.834 0.840 0.903
Full (SPM+SE- All 0.883 0.863 0.920
SPPF+FECIoU) Qil 0.925 0.817 0.923
Hole 0.944 0.944 0.961
Cutting 0.887 0.800 0.865
Crack 0.777 0.889 0.931

Note: P = Precision, R = Recall, mAP@0.5 = Mean Average Precision at loU = 0.5.
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Fig. 5: Comparison of PR curves baseline and Proposed model.

D. Ablation Study
We evaluated the impact of SPM, SE-SPPF and FECloU by comparing the YOLOvV7-Tiny baseline with

models incorporating each component individually (see Figure 6). Each module contributed to performance
improvements: SPM enhanced detection of small and irregular defects, SE-SPPF increased precision on Qil and
Hole defects, and FECloU improved bounding box accuracy.

The full model, which combines all three components, showed significant gains in precision, recall, and
MAP@0.5 compared to the baseline, demonstrating the effectiveness of their integration for fabric defect
detection.

[ Precision (P) R
[ Recall (R) ——
[ mAP®@0.5

0.8

0.6 4

Metric Value

0.24

0.0

“Baseline YOLOvV7-Tiny +SPM +SE-SPPF Full Model
Models

Fig. 6: Comparison of results across different models

Beyond quantitative metrics, visual examination of test results further validates the proposed model’s
effectiveness. As shown in Fig. 7, the final YOLOv7-Tiny model accurately detects diverse defect types with
high confidence. Bounding boxes are tightly aligned to defects—even small or elongated ones—and
misclassifications are rare. The model reliably localizes defects such as Cracks and Holes, while more
challenging categories e.g., Cutting and Oil also show improved precision. These visual results confirm that
integrating SPM, SE-SPPF, and FECIloU not only improves metric scores but also enhances real-world utility in
fabric defect detection.
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Fig. 7: YOLOv7- T|n|er SPAF Visual Results on Test Images.

E. Discussion

Fig. 6 illustrates the mAP@0.5 for all YOLOV7-Tiny variants. The baseline achieved 0.832 (strong
performance on Oil and Crack, weak on Cutting due to limited multi-scale feature extraction). Adding SPM
boosted Cutting and Crack detection, increasing overall mMAP@0.5 to 0.882. Adding SE-SPPF improved Oil and
Hole detection, raising mAP@0.5 to 0.903. The full model (SPM + SE-SPPF + FECIloU) achieved the highest
mAP@0.5 (0.920) with balanced performance across all defect types.

The model Yolov7-Tinier-SPAF high accuracy (0.920 mAP@0.5) ensures that defect data sent to the
cloud and team computers is trustworthy. Its fast speed (155 FPS) also allows designers and production teams to
receive alerts quickly—before additional defective fabric is produced. This reduces wasted time and materials,
which is essential for factory collaboration.

Overall, the results demonstrate that each module complements the others—SPM for multi-scale feature
enhancement, SE-SPPF for channel attention, and FECloU for accurate bounding box regression. The full
model outperforms both the baseline and single-module variants.

Conclusion and Future Work
We developed an enhanced YOLOvV7-Tiny model incorporating SPM, SE-SPPF, and FECloU for fabric
defect detection. Ablation studies and comparisons demonstrate that our model outperforms both baseline and
state-of-the-art models such as YOLOV8n and Faster R-CNN. It reliably detects diverse defects in real industrial
scenarios. As our future work we will further enhance the model accuracy and practical applicability.
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