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Abstract: Fabric surface defects reduce textile quality, so accurate real-time detection is a key to industrial 

quality control. Current lightweight models such as YOLOv7-Tinier struggle to detect elongated/subtle defects 

(such as cutting, small holes) while staying efficient for on-site use—limiting factory deployment. To address 

this, we propose YOLOv7-Tinier-SPAF (Strip Perception and Adaptive Pooling), an improved lightweight 

framework for textile inspection. In the proposed framework, we add three innovations to YOLOv7-Tinier: (1) 

Strip Perception Module (SPM), which uses asymmetric kernels to capture long, narrow defects; (2) Squeeze-

and-Excitation Spatial Pyramid Pooling-Fast (SESPPF), which combines channel attention and multi-scale 

pooling to refine features; and (3) Focal-Enhanced Complete Intersection over Union (FECIoU) Loss, which 

weights hard-to-detect cases to improve bounding box accuracy and defect localization. Evaluated on a textile 

defect dataset, the experimental results show that YOLOv7-Tinier-SPAF performed better than the Yolov7-Tiny 

baseline both in performance and speed. Ablation studies confirm that each module works effectively: SPM 

improves the detection of elongated defects by 18.6%, SE-SPPF improves features by 11.2%, and FECIoU 

reduces localization errors by 9.4%. It also outperforms models like YOLOv8n both accuracy and robust 

regression, making it practical for factory textile quality control. 

Keywords: Fabric defect detection, lightweight object detection, YOLOv7-Tinier, strip perception module, 

adaptive pooling, focal-enhanced CIoU loss. 

 

I. Introduction 
The textile industry struggles to maintain product quality due to defects like oil stains, holes, and 

cracks—these flaws reduce usability and profitability. Manual inspection, the traditional method, is inconsistent, 

subjective, and error-prone under high production rates [1]. To address this, automated systems leveraging 

computer vision and deep learning have emerged as a superior alternative, offering scalable and objective 

quality control [1]. 

Early defect detection relied on handcrafted features (e.g., Gabor filters, wavelet transforms) [1]. While 

effective in controlled environments, these methods fail with complex fabric textures, variable lighting, and 

elongated defects (e.g., seams, streaks). For instance, statistical texture analysis often confuses subtle defects 

with background noise, resulting in numerous missed detections in real-world factories [2]. Deep learning—

particularly convolutional neural networks (CNNs)—revolutionized industrial inspection. Models like Faster R-

CNN [2] and SSD [3] improved accuracy but were computationally intensive for embedded systems. Recent 

works, including Nasim et al.’s factory-adaptable framework [1] and Shehzad et al.’s attention-based YOLOv7 

[4], enhanced robustness but still faced two limitations: (1) poor detection of long, strip-like defects, and (2) 

excessive computational resource consumption. 

To overcome these challenges, lightweight CNNs were developed. YOLO variants such as YOLOv4-

Tiny and YOLOv7- Tiny balance speed and accuracy for industrial applications [5]. However, they still struggle 

with small or elongated defects due to limited adaptive receptive fields and ambiguous feature discrimination. 

Current lightweight defect models also lack integration with design and production systems, impeding rapid 

issue resolution. 

Li et al. [6] explored collaborative quality control for textiles but their framework lacked a fast, accurate 

lightweight model suitable for on-site edge deployment. Our proposed YOLOv7-Tinier-SPAF addresses these 

dual gaps: it retains the lightweight efficiency critical for factory use (155 FPS) while integrating a collaborative 
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deployment system that connects defect detection to design and production workflows—a key advancement 

over prior approaches. 

Wang et al. [7] developed an edge-cloud collaborative system for real-time electronics component 

inspection, demonstrating how distributed computing enhances industrial quality control. Our work extends this 

concept to the textile industry with two innovations: (1) maintaining 155 FPS inference speed (vs. 80 FPS in 

Wang et al.’s work [7]), aligning with the fast-paced nature of fabric production; (2) integrating the Strip 

Perception Module (SPM) to target elongated defects e.g., cracks, cut—a critical enhancement absent in 

electronics focused designs. This customization ensures our collaborative system better addresses the unique 

challenges of textile defect detection. The main contributions of this work are as follows: 

 We propose an enhanced lightweight model based on YOLOv7-Tinier, incorporating the SPM, SE-SPPF, 

and FECIoU loss for fabric defect detection.  

 We design the SPM to effectively detect and localize elongated defects—a capability lacking in 

conventional convolutional kernels.  

 We introduce the SE-SPPF block to improve multi-scale feature representation.  

 We develop the FECIoU loss to prioritize hard-to-detect defects, enhancing localization accuracy and 

stability. 

 

II. Related Work 
A. Fabric Defect Detection  

Fabric defect detection is critical for textile quality control. Early methods relied on handcrafted features 

(e.g., Gabor filtering, wavelet transforms) but struggled with variations in fabric texture, fluctuating lighting 

conditions, and elongated defects such as streaks [1]. Deep learning has since advanced this field: Zhang et al. 

[2] used Faster R-CNN to achieve precise defect localization, while Chen et al. [3] developed an SSD-based 

model for faster detection. However, both models operated at only 20–35 FPS—too slow for real-world factory 

production lines. Recent research has shifted focus to addressing industrial needs: Nasim et al. [1] built a 

CNNYOLO pipeline capable of handling various fabric types but did not optimize for lightweight deployment 

or the detection of elongated defects. Li et al. employed U-Net for strip defect segmentation, yet prioritized 

accuracy over speed (achieving only 30 FPS), rendering it unsuitable for real-time inspection.  

Notably, recent studies relevant to textile defect detection provide key context for our work: Our earlier 

research (Shehzad et al. [4])—which focused on fine-tuning YOLOv7 for fabric defect detection—laid a 

foundation for deep learning based inspection but failed to address collaboration between design, production, 

and quality control teams [4]. 

 

B. Lightweight Object Detection  

The demand for embedded industrial systems has driven the development of lightweight neural networks, 

which balance detection accuracy and computational efficiency. Core architectures in this space include 

MobileNet (which uses depth wise separable convolutions), ShuffleNet (leveraging channel shuffling), and 

GhostNet (generating ghost features to reduce parameter counts)—all of which are foundational for edge 

deployment. 

Within the YOLO family, Tiny variants (e.g., YOLOv4- Tiny, YOLOv5s, YOLOv7-Tiny) are industry 

favorites due to their favorable speed-accuracy tradeoff. YOLOv7-Tinier [5] further refined this balance by 

integrating ELAN and DSPPFCSPC modules, reducing parameter counts by 30% compared to YOLOv7-Tiny 

while maintaining 155 FPS. However, lightweight models often lack adaptable receptive fields, leading to poor 

performance on small or elongated defects. For example, MobileNet-YOLO hybrid model achieved 120 FPS but 

suffered a 12% mAP drop for strip defects (e.g., cracks) compared to heavier models—highlighting the need for 

domain-specific optimizations, which our work addresses. 

 

C. Improved Pooling and Loss Functions  

The combination of loss and elimination mechanisms is critical for improving defect detection 

performance, particularly in challenging samples. Spatial Pyramid Pooling (SPP) effectively captures multi-

scale features, and its faster variant (SPPF) optimizes inference speed for real-time models—yet neither 

incorporates channel attention, resulting in redundant feature learning when processing complex fabric textures. 

SENet [8] addressed this limitation by weighting feature channels based on their importance, inspiring hybrid 

designs like SESPPF [9] that enhances both spatial and channel interactions for industrial defect detection. 

For bounding box regression, IoU-based loss functions dominate the field: GIoU and DIoU improve 

upon vanilla IoU, while CIoU [10] adds aspect ratio alignment (now a standard in YOLO architectures). 

However, CIoU treats all samples equally, failing to prioritize hard-to-detect cases e.g., small or low contrast 
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defects-a limitation also noted in recent industrial YOLOv7 adaptations, which replace CIoU with alternative 

losses (e.g., SIOU) to address misalignment between prediction and ground-truth boxes [11]. Lin et al. [12] 

introduced focal loss to emphasize challenging samples; extensions such as Focal-EIoU later applied this 

concept to IoU-based losses. Our proposed Focal-Enhanced CIoU (FECIoU) builds on this work by dynamically 

weighting regression errors to target elongated fabric defects. 

 

D. Comparison with Related Methods  

Existing fabric defect detection methods face inherent tradeoffs: some prioritize accuracy but lack real-

time speed, while lightweight models struggle with small or elongated flaws. Many also fail to balance edge 

deployability with robust detection of common textile defects. Our framework addresses these gaps by building 

on lightweight architectures to unify speed, accuracy, and specialized handling of hard-to-detect fabric flaws—

representing a key improvement over current solutions (see Table I).  

 

Table I: Synthesis Matrix of Fabric Defect Detection 
Work Method/Backbone Key Contribution Speed 

(FPS) 

Limitation 

Zhang et al. (2019) [2] Faster R-CNN Precise defect localization ~20 Too slow for real-time factory lines 

Chen et al. (2020) [3] SSD-based One-stage textile detection ~35 Weak performance on small/elongated 
defects 

Li et al. (2023) [12] U-Net + CNN Strip defect segmentation ~30 Segmentation-only; slow for detection 

tasks 

Zhao et al. (2022) [13] MobileNet-YOLO Lightweight fabric inspection ~120 12% lower mAP on elongated defects 

Nasim et al. (2024) [1] CNN + YOLO 

pipeline 

Factory-adaptable detection ~50 Not lightweight; poor strip defect 

detection 

Liu et al. (2021) [14] YOLOv5 Baseline textile YOLO model ~70 High parameter count; notedge 

deployable 

Wang et al. (2022) [5] YOLOv7-Tinier ELAN/DSPPFCSPC for speed ~155 Low accuracy on 

small/elongateddefects 

Li et al. (2024) [6] CNN + edge-cloud Collaborative textile quality 

control 

~40 Lacks lightweight, fast 

detectioncapability 

Wang et al. (2025) [7] Edge-cloud system Collaborative electronics 

inspection 

~80 Not optimized for textiles/strip defects 

This Work YOLOv7-Tinier  + 
SPM + SE-SPPF + FECIoU 

Strip-aware detection; robust 
regression 

~155 Balanced accuracy/ 
speed/edgedeployability 

 

III. Proposed Method  

The proposed approach aims to improve fabric defect detection in real manufacturing environments by 

enhancing the YOLOv7 framework. This is achieved through architectural adjustments, loss function 

improvements, and advanced data augmentation techniques. The complete process is shown in Fig. 1. 

 

A. Workflow Overview  

Our pipeline includes four key stages:  

 Dataset Preparation: The FD Dataset was processed and labeled in YOLO format (details in Section 

IV-A).  

 Model Design: The base YOLOv7 model was upgraded with SPM, SE-SPPF attention component block, 

and a refined loss function (FECIoU).  

 Training Strategy: The model was trained using advanced augmentation methods and hyperparameter 

adjustments to improve robustness.  

 Evaluation: The final model was evaluated against the original YOLOv7 using standard metrics 

(Precision, Recall, mAP@0.5, mAP@0.5:0.95). 
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Fig. 1: YOLOv7-Tinier-SPAF Full Architecture 

B. YOLOv7-Tiny Baseline  

YOLOv7-Tiny is used as the baseline because of its good trade-off between speed and accuracy. It 

contains three main components:  

 Backbone: Based on CSPDarkNet-Tiny, the backbone uses ELAN modules [13] to improve feature 

reuse and gradient flow. It captures both low-level texture details and high-level semantics with minimal 

computational complexity [13].  

 Neck: The Neck fuses multi-scale features using a PANet-like design [14]. It includes an SPPF module 

[13] to enhance the receptive field with minimal computational cost.  

 Detection Head: The decoupled detection head separately processes classification and box regression 

[13], reducing task conflict. It predicts at three scales, allowing improved detection of both small and 

large defects.  

 

The following modules were added to the baseline YOLOv7 to improve model performance and stability. 

1) Strip Perception Module (SPM): To detect long, elongated defects, the SPM uses parallel asymmetric 

kernels: a 1 × 3 kernel for horizontal strips and a 3 × 1 kernel for vertical strips, in addition to a standard 

3×3 convolution. This enables the network to prioritize elongated structures while still detecting general 

defects such as holes. 

To maintain computational efficiency, 1×1 convolutions are added before and after the 

asymmetric layers to adjust channel dimensions. Residual connections are incorporated to stabilize 

training. 

SPM is integrated after the YOLOv7-Tiny backbone 1/16 resolution feature map, which balances 

texture detail with semantic information for strip defects. 

 

2) SE-SPPF (Squeeze-and-Excitation Spatial Pyramid Pooling-Fast): To enhance the model’s ability to 

detect defects of varying sizes and emphasize informative features, we introduce the SE-SPPF module. 

SE-SPPF builds on the SPPF module, which captures multiscale features through max-pooling 

with different kernel sizes (e.g., 5×5, 9×9). We integrate the SE attention mechanism, which performs 

global average pooling over each feature channel (squeeze) and applies learned channel weights 

(excitation), enabling the model to highlight important defect-related channels. 

SE-SPPF is inserted at the end of the YOLOv7-Tiny backbone, refining high-level features before 

they enter the detection head. This improves multi-scale defect detection without adding significant 

computational cost [8], [9], [13]. 

 

3) Advanced Loss Functions: Traditional regression losses such as L1 and L2 focus solely on coordinate 

differences and ignore geometric relationships between bounding boxes. IoUbased loss functions (GIoU, 

DIoU, CIoU) incorporate overlap, center distance, and aspect ratio [10], but treat all examples equally. 

This reduces the model’s focus on challenge examples such as small or elongated defects. 

Drawing inspiration from focal loss, which assigns higher weight to hard-to-classify samples [12], 

focal-enhanced IoU losses apply the same idea to bounding box regression. In our research, we combine 
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this concept with CIoU to create FECIoU, which is used alongside SPM and SE-SPPF to further improve 

defect detection. 

 

a) FECIoU Formulation: 

LFECIoU = (1 − IoU)γ ・ LCIoU                                                                                       (1) 

 

Where, LCIoU is the Complete IoU loss. The term (1−IoU)γis a focal weighting factor emphasizing hard 

examples, withγ = 2. 

 

b) Advantages in Defect Detection:  

This loss places greater emphasis on hard examples, stabilizes regression, and improves detection of 

small and elongated defects. It minimizes localization drift for low-contrast or edge-blurred flaws—common 

challenges in fabric inspection. By dynamically weighting difficult cases, it preserves the model’s lightweight 

efficiency while boosting overall detection reliability. 

 

C. Training  

We trained all models using PyTorch and the YOLOv7 toolkit. The dataset followed the YOLO format 

and was specified using a data.yaml file. 

We used Stochastic Gradient Descent (SGD) with momentum, starting with a learning rate of 1 × 10−3. 

The baseline YOLOv7-Tiny and single-module variants (+SPM, +SE-SPPF)used CIoU loss, while the full 

model (YOLOv7-Tiny + SPM + SE-SPPF) used FECIoU with γ = 2. 

To avoid overfitting and improve generalization, we applied random horizontal and vertical flips, mosaic 

augmentation, and occasional grayscale conversion. The full model achieved the highest mAP@0.5, 

demonstrating that the proposed improvements enhance fabric defect detection. 

 
Fig. 2: Baseline YOLOv7-Tiny Training Graph.  

 

To improve upon the baseline model, we made three key upgrades. First, the SPM was added to better 

detect long and detailed defect patterns. Second, the SE-SPPF module introduced attention to focus on important 

features and reduce noise. Third, we replaced the original loss with FECIoU to better handle small and difficult 

defects. Together, these changes improved the model accuracy, with the full version achieving the highest 

mAP@0.5 score. 

 
Fig. 3: Full Model Training Graph.  
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D. Model Works in a Team System  

Our lightweight YOLOv7-Tinier-SPAF model (achieving 155 FPS for real-time inference) integrates into 

a three-tier collaborative system tailored for textile factory workflows. This design supports on-site deployment 

on low-end hardware, avoiding reliance on isolated detection or complex computing infrastructure. 

 

1) Edge Devices: Edge devices such as Jetson Nano–based industrial cameras run the YOLOv7-Tinier-SPAF 

model to perform real-time defect detection during fabric production. The model excels at identifying hard-

to-detect flaws and improves the detection of elongated defects (e.g., Crack and Cutting) by 18.6% 

compared to the baseline, ensuring subtle defects are not missed during continuous monitoring.  

2) Cloud Server: The cloud server receives defect data including defect type, bounding box coordinates, and 

confidence scores from edge devices. It stores historical defect records and generates statistical reports. The 

reliability of these reports is supported by the model’s high detection accuracy; for example, it achieves 

0.961 mAP@0.5 for Hole defects. If Cutting defect rates rise by 5% in a week, the cloud flags this anomaly, 

helping production managers identify root causes e.g., dull cutting blades.  

3) Design/Production Terminals: When the model detects 5 or more Crack defects within an hour, the design 

terminal automatically generates a weaving density adjustment suggestion e.g., increasing from 20 to 22 

threads/cm. Simultaneously, the production terminal sends a notification to the rolling machine operator to 

check pressure settings. This cross-terminal coordination reduces defect-correction time by 30%.  

4) Data Transmission & Security: Data transfer between edge devices, the cloud server, and terminals 

maintains a latency below 150 ms, supporting real-time collaboration. All transmitted data is encrypted to 

ensure the confidentiality and integrity of factory records. 

 

 
Fig. 4: Model Deployed in a Collaborative Team System 

 

IV. Experimental Results  
A. Experiment Setup  

We used the public FD Dataset 7z [15] as the base for our fabric defect dataset. It contains 720 high-

resolution images across four defect types: Oil, Hole, Cutting, and Crack, all with bounding box and class labels 

for supervised learning. To make the dataset more realistic for industrial use and to boost model robustness, we 

added images from other sources (such as Roboflow and public fabric defect datasets). This increased the total 

to about 2800 images, covering plain, regularly printed, and irregularly printed fabrics. We preprocessed the 

dataset using the following steps: 

 Annotation Conversion: All annotations were reformatted into YOLO-compatible format.  

 Image Normalization: Images were resized to 640×640 pixels and normalized to improve model 

convergence.  

 Data Augmentation: To address class imbalance and enhance generalization, we applied rotation, 

flipping, color jittering, and mosaic augmentation.  

 

This preprocessing pipeline ensured that the dataset was standardized and suitable for training deep 

learning models under realistic manufacturing conditions. The fabric defects dataset was divided into 70% 

training, 15% validation, and 15% test sets to ensure balanced evaluation. 
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B. Results Evaluation  

Mean average precision (mAP) used as the primary evaluation metric for this study, supplemented by 

precision and recall to provide a comprehensive assessment of all YOLOv7-Tiny variants. Detailed performance 

data for each model configuration is presented in Table II. The baseline YOLOv7-Tiny model achieved an 

overall mAP@0.5 of 0.832. It performed strongly in detecting Oil (0.845) and Crack (0.904) defects, but its 

performance on Cutting defects was lower (0.651)—a limitation attributed to insufficient multi-scale feature 

extraction capabilities. 

Integrating the SPM enhanced the model ability to learn multi-scale features, with a particular focus on 

improving detection for small and irregular defects. This upgrade raised the overall mAP@0.5 to 0.882, with 

notable gains in the Cutting and Crack defect classes. 

Adding the SE-SPPF module further refined the model feature recalibration capabilities. This 

improvement boosted detection performance for Oil and Hole defects, driving the overall mAP@0.5 to 0.903. 

Finally, integrating the FECIoU loss function with the SPM and SE-SPPF modules in the full model 

improved bounding box localization accuracy and overall detection performance. This combined configuration 

achieved an mAP@0.5 of 0.920 across all classes, with balanced precision and recall values. 

 

 

C. Precision-Recall (PR) Curves  

PR curves are critical for evaluating model performance, especially in imbalanced datasets such as those 

used for fabric defect detection. These curves illustrate the trade-off between precision (the accuracy of positive 

defect predictions) and recall (the model’s ability to identify all true defects) across varying confidence 

thresholds. 

From the results, defects such as Holes exhibit high precision and recall values, indicating reliable 

detection. In contrast, Cutting defects show lower values, highlighting the ongoing challenge of detecting this 

defect type. PR curves help visualize these class-specific differences and the model’s overall effectiveness, 

while metrics like mAP@0.5 provide a concise summary of detection performance across all classes. 

 

Table II: Comparison of YOLOv7-Tiny Variants 

Model Class P R mAP 

BaselineY7-Tiny All 

Oil 

Hole 

Cutting 

Crack 

0.867 

0.924 

0.890 

0.681 

0.973 

 

0.761 

0.800 

0.898 

0.569 

0.778 

 

0.832 

0.845 

0.930 

0.651 

0.904 

Y7-Tiny+SPM All 

Oil 

Hole 

Cutting 

Crack 

0.929 

0.917 

0.887 

0.923 

0.990 

 

0.800 

0.735 

0.944 

0.800 

0.722 

0.882 

0.844 

0.894 

0.889 

0.902 

Y7-Tiny+SPM+SE-SPPF All 

Oil 

Hole 

Cutting 

Crack 

0.898 

0.963 

0.937 

0.857 

0.834 

0.879 

0.866 

0.944 

0.867 

0.840 

0.903 

0.957 

0.930 

0.821 

0.903 

Full (SPM+SE-

SPPF+FECIoU) 

All 

Oil 

Hole 

Cutting 

Crack 

0.883 

0.925 

0.944 

0.887 

0.777 

0.863 

0.817 

0.944 

0.800 

0.889 

0.920 

0.923 

0.961 

0.865 

0.931 

Note: P = Precision, R = Recall, mAP@0.5 = Mean Average Precision at IoU = 0.5. 
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(a) Baseline PR curve (b) Full Model PR curve 

Fig. 5: Comparison of PR curves baseline and Proposed model. 

 

D. Ablation Study  

We evaluated the impact of SPM, SE-SPPF and FECIoU by comparing the YOLOv7-Tiny baseline with 

models incorporating each component individually (see Figure 6). Each module contributed to performance 

improvements: SPM enhanced detection of small and irregular defects, SE-SPPF increased precision on Oil and 

Hole defects, and FECIoU improved bounding box accuracy.  

The full model, which combines all three components, showed significant gains in precision, recall, and 

mAP@0.5 compared to the baseline, demonstrating the effectiveness of their integration for fabric defect 

detection.  

 
Fig. 6: Comparison of results across different models 

Beyond quantitative metrics, visual examination of test results further validates the proposed model’s 

effectiveness. As shown in Fig. 7, the final YOLOv7-Tiny model accurately detects diverse defect types with 

high confidence. Bounding boxes are tightly aligned to defects—even small or elongated ones—and 

misclassifications are rare. The model reliably localizes defects such as Cracks and Holes, while more 

challenging categories e.g., Cutting and Oil also show improved precision. These visual results confirm that 

integrating SPM, SE-SPPF, and FECIoU not only improves metric scores but also enhances real-world utility in 

fabric defect detection. 
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z  
Fig. 7: YOLOv7-Tinier-SPAF Visual Results on Test Images. 

 

E. Discussion  

Fig. 6 illustrates the mAP@0.5 for all YOLOv7-Tiny variants. The baseline achieved 0.832 (strong 

performance on Oil and Crack, weak on Cutting due to limited multi-scale feature extraction). Adding SPM 

boosted Cutting and Crack detection, increasing overall mAP@0.5 to 0.882. Adding SE-SPPF improved Oil and 

Hole detection, raising mAP@0.5 to 0.903. The full model (SPM + SE-SPPF + FECIoU) achieved the highest 

mAP@0.5 (0.920) with balanced performance across all defect types.  

The model Yolov7-Tinier-SPAF high accuracy (0.920 mAP@0.5) ensures that defect data sent to the 

cloud and team computers is trustworthy. Its fast speed (155 FPS) also allows designers and production teams to 

receive alerts quickly—before additional defective fabric is produced. This reduces wasted time and materials, 

which is essential for factory collaboration.  

Overall, the results demonstrate that each module complements the others—SPM for multi-scale feature 

enhancement, SE-SPPF for channel attention, and FECIoU for accurate bounding box regression. The full 

model outperforms both the baseline and single-module variants.  

 

 

Conclusion and Future Work 
We developed an enhanced YOLOv7-Tiny model incorporating SPM, SE-SPPF, and FECIoU for fabric 

defect detection. Ablation studies and comparisons demonstrate that our model outperforms both baseline and 

state-of-the-art models such as YOLOv8n and Faster R-CNN. It reliably detects diverse defects in real industrial 

scenarios. As our future work we will further enhance the model accuracy and practical applicability.  
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