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Abstract: Let 𝐹 ∈  𝑅, 𝐶, 𝐻 . Let 𝓤𝒏×𝒏be the set of secondary unitary bimatrics in 𝐹𝑛×𝑛 , and let 𝑂𝑛×𝑛  be the set 

of secondary orthogonal bimatrices in 𝐹𝑛×𝑛 . Suppose 𝑛 ≥ 2, we show that every 𝐴𝐵 ∈ 𝐹𝑛×𝑛  can be written as a 

sum of bimatrices in 𝓤𝒏×𝒏 and of bimatrices in 𝑂𝑛×𝑛 . let 𝐴𝐵 ∈ 𝐹𝑛×𝑛  be given that and let 𝑘 ≥ 2 be the least 

integer that is a least upper bound of the singular values of AB. When F=R, we show that if 𝑘 ≤ 3, then AB can 

be written as a sum of 6 secondary orthogonal bimatrices; if 𝑘 ≥ 4, we show that AB can be written as a sum of 

𝑘 + 2 secondary orthogonal bimatrices. 

Keywords: Orthogonal matrix, unitary matrix, bimatrix, orthogonal bimatrix, unitary bimatrix, secondary 

orthogonal bimatrices, secondary unitary bimatrices. 
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I. Introduction 
Matrices provide a very powerful tool for dealing with linear models. Bimatrices are still a powerful and 

an advanced tool which can handle over one linear model at a time. Bimatrices are useful when time bound 

comparisons are needed in the analysis of a model. Bimatrices are of several types. We denote the space of nxn 

complex matrices by ℛnxn. For𝐴 ∈ 𝐶nxn , 𝐴𝑇 , 𝐴𝑠 , 𝐴∗, 𝐴−1and 𝑑𝑒𝑡( 𝐴) denote transpose, secondary transpose, 

conjugate transpose, inverse and determinant of A respectively. If 𝐴𝐴𝑇 = 𝐴𝑇𝐴 = 𝐼 then A is an orthogonal 

matrix, where Iis the identity matrix.If 𝐴𝑉𝐴𝑇𝑉 = 𝑉𝐴𝑇𝑉 𝐴 = 𝐼 𝑜𝑟 𝐴𝐴𝑆 = 𝐴𝑆𝐴 = 𝐼, Where V is a permutation 

matrix with units in its secondary diagonal, 𝐴𝑆  is a secondary orthogonal matrix. In this paper, we study 

secondary orthogonal bimatrices as a generalization of secondary orthogonal matrices.  Some of the properties 

of secondary orthogonal matrices are extended to secondary orthogonal bimatrices.  Some important results of 

secondary orthogonal matrices are generalized to secondary orthogonal bimatrices.  

 

II. Basic Definitions and Results 
Definition 2.1 [1] 

A bimatrix 𝐴𝐵 is defined as the union of two rectangular array of numbers A1 and A2 arranged into rows 

and columns. It is written as 𝐴𝐵 = 𝐴1 ∪ 𝐴2 with 𝐴1 ≠ 𝐴2 (except zero and unit bi matrices) where, 

𝐴1 =

 
 
 
 
𝑎11

1 𝑎12
1 ⋯ 𝑎1𝑛

1

𝑎21
1 𝑎22

1 ⋯ 𝑎2𝑛
1

⋮ ⋮ ⋱ ⋮
𝑎𝑚1

1 𝑎𝑚2
1 ⋯ 𝑎𝑚𝑛

1  
 
 
 
 and 𝐴2 =

 
 
 
 
𝑎11

2 𝑎12
2 ⋯ 𝑎1𝑛

2

𝑎21
2 𝑎22

2 ⋯ 𝑎2𝑛
2

⋮ ⋮ ⋱ ⋮
𝑎𝑚1

2 𝑎𝑚2
2 ⋯ 𝑎𝑚𝑛

2  
 
 
 

 

′ ∪′ is just for the notational convenience (symbol) only. 

 

Definition 2.2 [1] 

Let 𝐴𝐵 = 𝐴1 ∪ 𝐴2 and 𝐶𝐵 = 𝐶1 ∪ 𝐶2 be any two mx n bimatrices. The sum 𝐷𝐵  of the bimatrices 𝐴𝐵 and 

𝐶𝐵 is defined as  

 𝐷𝐵 = 𝐴𝐵 + 𝐶𝐵 =  𝐴1 ∪ 𝐴2 +  𝐶1 ∪ 𝐶2  

            =  𝐴1 + 𝐶1 ∪  𝐴2 + 𝐶2  

Where 𝐴1 + 𝐶1 and 𝐴2 + 𝐶2 are the usual addition of matrices. 

 

Definition 2.3 [2] 

If 𝐴𝐵 = 𝐴1 ∪ 𝐴2 and 𝐶𝐵 = 𝐶1 ∪ 𝐶2 be two bimatrices, then 𝐴𝐵 and 𝐶𝐵 are said to be equal (written as 

𝐴𝐵 = 𝐶𝐵) if and only if A1 and C1 are identical and A2 and C2 are identical. (That is, A1= C1 and A2 = C2). 

 

Definition 2.4 [2] 

Given a bimatrix 𝐴𝐵 = 𝐴1 ∪ 𝐴2 and a scalar 𝜆, the product of 𝜆 and 𝐴𝐵 written as 𝜆𝐴𝐵  is defined to be  
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 𝜆𝐴𝐵 =

 
 
 
 
𝜆𝑎11

1 𝜆𝑎12
1 ⋯ 𝜆𝑎1𝑛

1

𝜆𝑎21
1 𝜆𝑎22

1 ⋯ 𝜆𝑎2𝑛
1

⋮ ⋮ ⋱ ⋮
𝜆𝑎𝑚1

1 𝜆𝑎𝑚2
1 ⋯ 𝜆𝑎𝑚𝑛

1  
 
 
 
∪

 
 
 
 
𝜆𝑎11

2 𝜆𝑎12
2 ⋯ 𝜆𝑎1𝑛

2

𝜆𝑎21
2 𝜆𝑎22

2 ⋯ 𝜆𝑎2𝑛
2

⋮ ⋮ ⋱ ⋮
𝜆𝑎𝑚1

2 𝜆𝑎𝑚2
2 ⋯ 𝜆𝑎𝑚𝑛

2  
 
 
 

  =  𝜆𝐴1 ∪ 𝜆𝐴2 . 

That is, each element of A1 and A2 are multiplied by 𝜆. 

 

Remark 2.5 [2] 

If 𝐴𝐵 = 𝐴1 ∪ 𝐴2be a bimatrix, then we call A1 and A2 as the component matrices of the bimatrix AB. 

 

Definition 2.6 [1] 

If 𝐴𝐵 = 𝐴1 ∪ 𝐴2 and 𝐶𝐵 = 𝐶1 ∪ 𝐶2 are both nx n square bimatrices then, the bimatrix multiplication is 

defined as, 𝐴𝐵 × 𝐶𝐵 =  𝐴1𝐶1 ∪  𝐴2𝐶2 . 
 

Definition 2.7 [1] 

Let 𝐴𝐵
𝑚×𝑚 = 𝐴1 ∪ 𝐴2be a mxm square bimatrix. We define 𝐼𝐵

𝑚×𝑚 = 𝐼𝑚×𝑚 ∪ 𝐼𝑚×𝑚 = 𝐼1
𝑚×𝑚 ∪ 𝐼2

𝑚×𝑚  to 

be the identity bimatrix. 

 

Definition 2.8 [1] 

Let 𝐴𝐵
𝑚×𝑚 = 𝐴1 ∪ 𝐴2 be a square bimatrix, AB is a symmetric bimatrix if the component matrices A1 and 

A2 are symmetric matrices. i.e, 𝐴1 = 𝐴1
𝑇  and 𝐴2 = 𝐴2

𝑇 . 
 

Definition 2.9 [1] 

Let 𝐴𝐵
𝑚×𝑚 = 𝐴1 ∪ 𝐴2 be a mxm square bimatrix i.e, A1 and A2 are mxm square matrices. A skew-

symmetric bimatrix is a bimatrix AB for which 𝐴𝐵 = −𝐴𝐵
𝑇 , where −𝐴𝐵

𝑇 = −𝐴1
𝑇 ∪ −𝐴2

𝑇  i.e, the component 

matrices A1 and A2 are skew-symmetric.  

 

Definition 2.10 [3] 

A bimatrix 𝐴𝐵 = 𝐴1 ∪ 𝐴2 is said to be unitary bimatrix, if 𝐴𝐵𝐴𝐵
∗ = 𝐴𝐵

∗ 𝐴𝐵 = 𝐼𝐵  (or)  𝐴1𝐴1
∗ ∪

𝐴2𝐴2∗=𝐴1∗𝐴1∪𝐴2∗𝐴2=𝐼1∪𝐼2. 
(That is, the component matrices of AB are unitary.) 

That is, 𝐴𝐵
∗ = 𝐴𝐵

−1 (or)  𝐴1
∗ ∪ 𝐴2

∗ =  𝐴1
−1 ∪ 𝐴2

−1 . 

 

Definition 2.11 [4] 

A bimatrix 𝐴𝐵 = 𝐴1 ∪ 𝐴2 is said to be orthogonal bimatrix, if 𝐴𝐵𝐴𝐵
𝑇 = 𝐴𝐵

𝑇𝐴𝐵 = 𝐼𝐵  (or)  𝐴1𝐴1
𝑇 ∪

𝐴2𝐴2𝑇=𝐴1𝑇𝐴1∪𝐴2𝑇𝐴2=𝐼1∪𝐼2. 
(That is, the component matrices of AB are orthogonal.) 

 That is, 𝐴𝐵
𝑇 = 𝐴𝐵

−1 (or)  𝐴1
𝑇 ∪ 𝐴2

𝑇 =  𝐴1
−1 ∪ 𝐴2

−1 . 

 

III. Secondary Orthogonal and Secondary Unitary Bimatrices 
Definition 3.1 [5] 

A bimatrix 𝐴𝐵  = 𝐴1 ∪ 𝐴2 is said to be secondary orthogonal bimatrix, if 𝐴𝐵𝑉𝐵𝐴𝐵
𝑇𝑉𝐵 = 𝑉𝐵𝐴𝐵

𝑇𝑉𝐵𝐴𝐵 = 𝐼𝐵  

or𝐴𝐵𝐴𝐵
𝑆 = 𝐴𝐵

𝑆𝐴𝐵 = 𝐼𝐵 , where 𝑉𝐵  is a permutation bimatrix with units in its secondary diagonal. 

(That is, the component matrices of AB are secondary orthogonal.) 

That is, 𝐴𝐵
𝑆 = 𝐴𝐵

−1 (or)  𝐴1
𝑆 ∪ 𝐴2

𝑆 =  𝐴1
−1 ∪ 𝐴2

−1 . 

 

Remark 3.2 

Let 𝐴𝐵 = 𝐴1 ∪ 𝐴2 be a secondary orthogonal bimatrix. If A1 and A2 are square and possess the same 

order then AB is called square secondary orthogonal bimatrix, and if A1 and A2 are of different orders then AB is 

called mixed square secondary orthogonal bimatrix.  

 

Example 3.3 

(1) 𝐴𝐵 =  

3

5

4

5
0

−
4

5

3

5
0

0 0 1

  ∪    

 
 
 
 
 

2

3

1

3

2

3
1

3

2

3
−

2

3

−
2

3

2

3

1

3  
 
 
 
 

 is a square secondary orthogonal bimatrix. 
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(2) 𝐴𝐵 =  
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃

− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃
 ∪  

𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃 0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0

0 0 1
  is a mixed square secondary orthogonal bimatrix. 

 

Definition 3.4 [4] 

Let 𝐴𝐵 = 𝐴1 ∪ 𝐴2 be an 𝑛 × 𝑛 complex bimatrix. (A bimatrix 𝐴𝐵 is said to be complex if it takes entries 

from the complex field). 𝐴𝐵 is called a unitary bimatrix if  𝐴𝐵𝐴𝐵
∗ = 𝐴𝐵

∗ 𝐴𝐵 = 𝐼𝐵  (or) 𝐴 𝐵
𝑇

= 𝐴𝐵
−1.  

That is, 𝐴1𝐴1
∗ ∪ 𝐴2𝐴2

∗ = 𝐴1
∗𝐴1 ∪ 𝐴2

∗𝐴2 = 𝐼1 ∪ 𝐼2. 

 

Example 3.5 

𝐴𝐵 = 𝐴1 ∪ 𝐴2 =
1

 2
 
𝑖 𝑖
𝑖 −𝑖

 ∪
1

2
 
1 + 𝑖 −1 + 𝑖
1 + 𝑖 1 − 𝑖

 is a unitary bimatrix. 

 

In this paper, we have determined which bimatrices (if any) in 𝑅𝑛×𝑛can be written as a sum of secondary 

unitary or secondary orthogonal bimatrices. Also, we have obtained that if 𝑘 ≤ 3, thenAB can be written as a 

sum of six secondary orthogonal bimatrices, and if 𝑘 ≥ 4, thenAB can be written as a sum of 𝑘 + 2 

secondaryorthogonal bimatrices, where k be the least integer that is a least upper bound of the singular values of 

AB. We let 𝓤𝒏×𝒏 and 𝑂𝑛×𝑛  are the set of secondary unitary and secondary orthogonal bimatrices in the complex 

field. We begin with the following observation. 

 

Lemma 3.6 

Let n be a given positive integer. Let 𝐺 ⊂ 𝐹𝑛×𝑛  be a group under multiplication. Then 𝐴𝐵 ∈ 𝐹𝑛×𝑛can be 

written as a sum of bimatrices in G if and only if for every 𝑄𝐵 , 𝑃𝐵 ∈ 𝐺, the bimatrix QBABPB can be written as a 

sum of bimatrices in G. 

Notice that both 𝓤𝒏×𝒏 and 𝑂𝑛×𝑛  are groups under multiplication. 

Let 𝛼1, 𝛼2 ∈ 𝐹 be given. Then lemma 3.6 guarantees that for each 𝑄𝐵 ∈ 𝐺, we have that 𝛼1𝑄1 ∪ 𝛼2𝑄2 

can be written as a sum of bimatrices from G if and only if 𝛼1𝐼1 ∪ 𝛼2𝐼2 can be written as a sum of bimatrices 

from G. 

 

Lemma 3.7 

Let 𝑛 ≥ 2 be a given integer. Let 𝐺 ⊂ 𝐹𝑛×𝑛  be a group under multiplication. Suppose that G contains 

𝐾𝐵 ≡ 𝑑𝑖𝑎𝑔 1, −1, … , −1  and the permutation bimatrices. Then every 𝐴𝐵 ∈ 𝐹𝑛×𝑛  can be written as a sum of 

bimatrices in G if and only if for each 𝛼1, 𝛼2 ∈ 𝐹, 𝛼1𝐼1 ∪ 𝛼2𝐼2 can be written as a sum of bimatrices from G. 

 

IV. Sum of Secondary Orthogonal Bimatrices in Rnxn 

The only bimatrices in the set of all secondary orthogonal bimatrices of order 1 are 1. Hence, not every 

element of 𝐹1×1 can be written as a sum of elements in the set of all secondary orthogonal bimatrices of order 1. 

In fact, only the integers can be written as a sum of elements of the set of all secondary orthogonal bimatrices of 

order 1. 

 Notice that 𝑂𝑛 ℝ = 𝑢𝑛 ℝ . When n=1, only the integers can be written as a sum of elements of 

𝑂1 ℝ . Suppose that n=2. We mimic the computations done in the case when 𝐹 = ℝ. 

Let 𝜃1, 𝜃2 ∈ ℝbe given, set 𝛼1 = 𝐶𝑜𝑠 𝜃1;  𝛼2 = 𝐶𝑜𝑠 𝜃2 and set 𝛽1 = 𝑆𝑖𝑛 𝜃1;  𝛽2 = 𝑆𝑖𝑛 𝜃2 

Then  𝐴1 𝛼1 , 𝛽1 ∪ 𝐴2 𝛼2, 𝛽2  in equation (2) of [6] is an element of 𝑂2 ℝ . 

Moreover,  𝐴1
℩ + 𝐴1

℩℩ ∪  𝐴2
℩ + 𝐴2

℩℩  = 2 𝐶𝑜𝑠𝜃1𝐼1
℩ ∪ 𝐶𝑜𝑠𝜃2𝐼2

℩℩ . 
Now, for every 𝛿1, 𝛿2 ∈ ℝthere exist a positive integer m and 𝜃1, 𝜃2 ∈ ℝsuch that 2𝑚 𝐶𝑜𝑠 𝜃1 =

𝛿1;  2𝑚 𝐶𝑜𝑠 𝜃2 = 𝛿2. 

We conclude that every  𝐴1 ∪ 𝐴2 ∈ ℝ𝑛×𝑛can be written as a sum of an even number of bimatrices from 

𝑂2 ℝ . 

When n=3, we again mimic the computations done in the case when 𝐹 = ℂusing 𝛼1 = 𝐶𝑜𝑠 𝜃1;  𝛼2 =
𝐶𝑜𝑠 𝜃2and 𝛽1 = 𝑆𝑖𝑛 𝜃1;  𝛽2 = 𝑆𝑖𝑛 𝜃2to show that for every 𝛿1, 𝛿2 ∈ ℝthe bimatrix  𝛿1𝐼1

℩℩℩ ∪ 𝛿2𝐼2
℩℩℩ can be written 

as a sum of an even number of bimatrices from 𝑂3 ℝ . 

Let 𝑛 ≥ 4be a given integer. If n=2k is even, then write  𝛿1𝐼1
2𝑘 ∪ 𝛿2𝐼2

2𝑘 =  𝛿1𝐼1
℩℩ ∪ 𝛿2𝐼2

℩℩ ⊕ …⊕
 𝛿1𝐼1

℩℩ ∪ 𝛿2𝐼2
℩℩  (k copies), and note that each  𝛿1𝐼1

℩℩ ∪ 𝛿2𝐼2
℩℩ can be written as a sum of an even number of 

bimatrices from 𝑂2 ℝ . 

If n=2k+1 is odd, then write  𝛿1𝐼1
2𝑘+1 ∪ 𝛿2𝐼2

2𝑘+1 =  𝛿1𝐼1
2𝑛−2 ∪ 𝛿2𝐼2

2𝑛−2 ⊕  𝛿1𝐼1
℩℩℩ ∪ 𝛿2𝐼2

℩℩℩ . 
Now,   𝛿1𝐼1

2𝑛−2 ∪ 𝛿2𝐼2
2𝑛−2  can be written as a sum of an even number of bimatrices from 𝑂2𝑛−2 ℝ and 

 𝛿1𝐼1
℩℩℩ ∪ 𝛿2𝐼2

℩℩℩  can be written as a sum of an even number of matrices from 𝑂2𝑛−2 ℝ and  𝛿1𝐼1
℩℩℩ ∪ 𝛿2𝐼2

℩℩℩  can be 
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written as a sum of an even number of bimatrices from 𝑂3 ℝ . We conclude that  𝛿1𝐼1
2𝑘+1 ∪ 𝛿2𝐼2

2𝑘+1 can be 

written as a sum of an even number of bimatrices from 𝑂2𝑘+1 ℝ . 

Hence, Lemma 3.2 of [6] guarantees that for every integer 𝑛 ≥ 2, every  𝐴1 ∪ 𝐴2 ∈ ℝ𝑛×𝑛  can be  

written as a sum of bimatrices from 𝑂𝑛 ℝ . 

 

Theorem 4.1 

Let 𝑛 ≥ 2 be a given integer. Every  𝐴1 ∪ 𝐴2 ∈ ℝ𝑛×𝑛  can be written as a sum of bimatrices from 

𝑶𝒏 ℝ = 𝓤𝒏 ℝ  

Proof 

Let 𝑛 ≥ 2 be a given integer and let  𝑈1 ∪ 𝑈2 ∈ 𝓤𝒏(ℝ) be given. 

Then  𝑈1 ∪ 𝑈2 ∈ 𝓤𝒏(ℝ) ∩ 𝐎𝒏(ℝ) that is, a realsecondary orthogonal bimatrix is both complex 

secondary unitary bimatrix and complexsecondary orthogonal bimatrix. 

Hence, 𝐴1 ∪ 𝐴2 ∈ ℝ𝑛×𝑛which a sum of matrices is in 𝓤𝒏(ℝ) is both a sum of complex secondary 

unitary bimatrices and a sum of complex secondary orthogonal bimatrices. Thus, the restrictions on these cases 

apply. It k is a positive integer such that𝜎1
1 𝐴1 > 𝑘; 𝜎2

1 𝐴2 > 𝑘,then  𝐴1 ∪ 𝐴2 cannot be written as a sum of k 

real secondary orthogonal bimatrices. 

Let m be a positive integer. Theorem 3.9 of [6] guarantees that  𝐼1 ∪ 𝐼2 ∈ ℂ2𝑚+1 cannot be written as a 

sum of two bimatrices in 𝑂2𝑚+1 ℝ . 
Now, we cannot be written as a sum of two bimatrices from 𝑂2𝑚+1 ℝ ⊂ 𝑂2𝑚+1 ℝ . 

In general, if  𝛼1, 𝛼2 ∉  −2,0,2 and if  𝑄1 ∪ 𝑄2 ∈ 𝑂2𝑚+1 ℝ , then  𝛼1𝑄1 ∪ 𝛼2𝑄2  cannot be written as 

a sum of two bimatrices from 𝑂2𝑚+1 ℝ . 

Let 𝑛 ≥ 2 be a given integer, and let  𝐴1 ∪ 𝐴2 ∈ ℝ𝑛×𝑛  be given. We now look at the bimatrices in 

𝑂𝑛 ℝ  that make up the sum  𝐴1 ∪ 𝐴2 . 

 

Definition 4.2 

Let 𝜃1, 𝜃2 ∈ ℝ be given. We define 

 𝐴1 𝜃1 ∪ 𝐴2 𝜃2  ≡  
𝐶𝑜𝑠 𝜃1 𝑆𝑖𝑛 𝜃1

−𝑆𝑖𝑛 𝜃1 𝐶𝑜𝑠 𝜃1
 ∪  

𝐶𝑜𝑠 𝜃2 𝑆𝑖𝑛 𝜃2

−𝑆𝑖𝑛 𝜃2 𝐶𝑜𝑠 𝜃2
  and  

 𝐵1 𝜃1 ∪ 𝐵2 𝜃2  ≡  
𝐶𝑜𝑠 𝜃1 𝑆𝑖𝑛 𝜃1

𝑆𝑖𝑛 𝜃1 𝐶𝑜𝑠 𝜃1
 ∪  

𝐶𝑜𝑠 𝜃2 𝑆𝑖𝑛 𝜃2

𝑆𝑖𝑛 𝜃2 𝐶𝑜𝑠 𝜃2
       (1) 

 

Remark 4.3 

Set  𝐾1
℩℩ ∪ 𝐾2

℩℩ ≡  𝐵1 0 ∪ 𝐵2 0  and notice that  𝐴1 0 ∪ 𝐴2 0  =  𝐼1
℩℩ ∪ 𝐼2

℩℩ . 

Let 0 ≤ 𝑟, 𝑠 ∈ ℝbe given, and let 𝑘 ≥ 2be an integer. If 𝑟, 𝑠 ≤ 𝑘,then Lemma 3.1 of [6] and taking the 

real and imaginary parts of the equation 𝑒𝑖𝜃1
1

+ ⋯ + 𝑒𝑖𝜃𝑘
1

= 𝛼1; 𝑒𝑖𝜃1
2

+ ⋯ + 𝑒𝑖𝜃𝑘
2

= 𝛼2   (2) 
Show that there exist  𝜃1

1, 𝜃2
1 , … , 𝜃𝑘

1 ∈ ℝ;  𝜃1
2 , 𝜃2

2, … , 𝜃𝑘
2 ∈ ℝ such that  𝐴1 𝜃1

1 + ⋯ + 𝐴1 𝜃𝑘
1  ∪

 𝐴2 𝜃1
2 + ⋯ + 𝐴2 𝜃𝑘

2  = 𝑟 𝐼1
℩℩ ∪ 𝐼2

℩℩ .  
Moreover, there exist  𝛽1

1, … , 𝛽𝑘
1 ∈ ℝ;  𝛽1

2, … , 𝛽𝑘
2 ∈ ℝ   such that  𝐵1 𝛽1

1 + ⋯ + 𝐵1 𝛽𝑘
1  ∪

 𝐵2 𝛽1
2 + ⋯ + 𝐵2 𝛽𝑘

2  = 𝑆 𝐾1
℩℩ ∪ 𝐾2

℩℩  
 

Theorem 4.4 

Let a positive integer n and let  𝐴1 ∪ 𝐴2 ∈ ℝ2𝑛  be given. Suppose that 𝑘 ≥ 2is an integer such that 

𝜎1
1 𝐴1 ≤ 𝑘; 𝜎2

1 𝐴2 ≤ 𝑘. Then   𝐴1 ∪ 𝐴2  can be written as a sum of 2k matrices in 𝑂2𝑛 ℝ . Moreover, for 

every integer 𝑚 ≥ 2𝑘 the matrix  𝐴1 ∪ 𝐴2  can be written as a sum of m matrices in 𝑂2𝑛 ℝ . 

 

Proof 

Let  𝐴1 ∪ 𝐴2 =  𝑈1 ∪ 𝑈2  𝛴1 ∪ 𝛴2  𝑊1 ∪ 𝑊2  be a singular value decomposition of  𝐴1 ∪ 𝐴2 . 

Then Lemma 3.6 guarantees that we only need to concern ourselves with 𝜀. For n=1, notice that 

𝑑𝑖𝑎𝑔𝐵 𝜎1
1 , 𝜎1

2 ∪ 𝑑𝑖𝑎𝑔𝐵 𝜎2
1, 𝜎2

2 = 𝑠 𝐼1
℩℩ ∪ 𝐼2

℩℩ + 𝑟 𝐾1
℩℩ ∪ 𝑘2

℩℩ , where  𝑠 =
1

2
 𝜎1

1 + 𝜎1
2 =

1

2
 𝜎2

1 + 𝜎2
2  and 

𝑡 =
1

2
 𝜎1

1 − 𝜎1
2 =

1

2
 𝜎2

1 − 𝜎2
2 . 

Now, 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑘. Hence, 𝑠 𝐼1
℩℩ ∪ 𝐼2

℩℩  and 𝑡 𝐾1
℩℩ ∪ 𝑘2

℩℩  can each be written as a sum of k secondary 

orthogonal bimatices. Moreover, for each integer 𝑝 ≥ 𝑘, notice that 𝑠 𝐼1
℩℩ ∪ 𝐼2

℩℩  can be written as a sum of p 

secondary orthogonal bimatrices.  

Hence,   𝑠𝐼1
℩℩ + 𝑟𝐾1

℩℩ ∪  𝑠𝐼2
℩℩ + 𝑟𝐾2

℩℩   can be written as a sum of p+k secondary orthogonal bimatrices. 

For,  𝑛 > 1write 
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 𝛴1 ∪ 𝛴2 = 𝑑𝑖𝑎𝑔 𝜎1
1, 𝜎2

1 , … , 𝜎2𝑛−1
1 , 𝜎2𝑛

1  ∪ 𝑑𝑖𝑎𝑔 𝜎1
2, 𝜎2

2, … , 𝜎2𝑛−1
2 , 𝜎2𝑛

2   

=  𝑑𝑖𝑎𝑔 𝜎1
1, 𝜎2

1 ⊕ …⊕ 𝑑𝑖𝑎𝑔 𝜎2𝑛−1
2 , 𝜎2𝑛

1   ∪  𝑑𝑖𝑎𝑔 𝜎1
2, 𝜎2

2 ⊕ …⊕ 𝑑𝑖𝑎𝑔 𝜎2𝑛−1
2 , 𝜎2𝑛

2    

Notice now that for each 𝑗 = 1, … , 𝑛, 𝑑𝑖𝑎𝑔 𝜎2𝑗−1
1 , 𝜎2𝑗

1  ∪ 𝑑𝑖𝑎𝑔 𝜎2𝑗−1
2 , 𝜎2𝑗

2   can be written as a fun of 2k 

secondaryorthogonal bimatrices, say  𝑃𝑗1
1 ∪ 𝑃𝑗1

2  , … ,  𝑃𝑗  2𝑘 
1 ∪ 𝑃𝑗  2𝑘 

2   

For each 𝑙 = 1, … ,2𝑘,set 𝑄𝑙
1 ∪ 𝑄𝑙

2 ≡  𝑃1𝑙
1 ∪ 𝑃1𝑙

2  ⊕ …⊕  𝑃𝑛𝑙
1 ∪ 𝑃𝑛𝑙

2  ,and notice that𝛴 =  𝑄1
1 + ⋯ +

𝑄2𝑘1∪𝑄12+…+𝑄2𝑘2 

Finally, notice that for each integer  𝑚 ≥ 2𝑘 and for each𝑗 = 1, … , 𝑛, the matrix 𝑑𝑖𝑎𝑔 𝜎2𝑗−1
1 , 𝜎2𝑗

1  ∪

𝑑𝑖𝑎𝑔 𝜎2𝑗−1
2 , 𝜎2𝑗

2   can be written as a sum of m secondary orthogonal bimatrices. 

 

Remark 4.5 

Consider  𝐶0
1 ∪ 𝐶0

2 ≡  𝑑𝑖𝑎𝑔 𝑏1, 𝑎1 ∪ 𝑑𝑖𝑎𝑔 𝑏2, 𝑎2   with real numbers 𝑏1 , 𝑏2 ≥ 𝑎1, 𝑎2 ≥ 0. 

If 𝑏1, 𝑏2 ≥ 2,then Theorem 3.4 ensures that  𝐶0
1 ∪ 𝐶0

2  can be written as a sum of 4 real secondary 

orthogonal bimatrices. Moreover, for each integer𝑡 ≥ 4,  𝐶0
1 ∪ 𝐶0

2  can be written as a sum of t real secondary 

orthogonal bimatrices. 

Suppose that 𝑏1 , 𝑏2 ≤ 3 if 0 ≤ 𝑏1 ≤ 2;  0 ≤ 𝑏1 ≤ 2,then Theorem 3.4 guarantees that  𝐶0
1 ∪ 𝐶0

2  can be 

written as a sum of four reals econdary orthogonal bimatrices. Moreover,   𝐶0
1 ∪ 𝐶0

2  can also be written as a 

sum of five real secondary orthogonal bimatrices. 

If 2 < 𝑏1 ≤ 3;  2 < 𝑏2 ≤ 3,then we look at two cases: 

(i) 0 ≤ 𝑎1 ≤ 1;  0 ≤ 𝑎2 ≤ 1 and  

(ii) 1 ≤ 𝑎1 ≤ 3;  1 ≤ 𝑎2 ≤ 3 

In the first case, set  𝐶1
1 ∪ 𝐶2

1 ≡  𝐶1
0 ∪ 𝐶2

0 −  𝐾1
2 ∪ 𝐾2

2 . Then 0 ≤ 𝑏1 − 1 ≤ 2;  0 ≤ 𝑏2 − 1 ≤ 2 and 

0 ≤ 𝑎1 + 1 < 2;  0 ≤ 𝑎2 + 1 < 2. Notice now that for each integer 𝑡 ≥ 4,  𝐶1
1 ∪ 𝐶2

1  can be written as a sum of 

t real secondary orthogonal bimatrices. 

In the second case, set  𝐶1
1 ∪ 𝐶2

1 ≡  𝐶1
0 − 𝐼1

℩℩ ∪  𝐶2
0 − 𝐼2

℩℩ . Then we have 0 ≤ 𝑎1 − 1 ≤ 𝑏1 − 1 ≤
2; 0 ≤ 𝑎2 − 1 ≤ 𝑏2 − 1 ≤ 2. Theorem 3.4 guarantees that for each integer 𝑡 ≥ 4,  𝐶1

1 ∪ 𝐶2
1  can be written as a 

sum of t real secondary orthogonal bimatrices. Hence, for each integer 𝑡 ≥ 5,  𝐶1
0 ∪ 𝐶2

0  can be written as a sum 

of t real secondary orthogonal bimatrices. 

We now use induction to show that if 𝑘 ≥ 2is an integer satisfying 𝑏1 ≤ 𝑘; 𝑏2 ≤ 𝑘,then for each integer 

𝑡 ≥ 𝑘 + 2,  𝐶1
0 ∪ 𝐶2

0 can be written as a sum of t real secondary orthogonal bimatrices. 

Suppose that the claim is true for some integer 𝑘 ≥ 3. We show that the claim is true when 0 < 𝑏1 ≤ 𝑘 +
1;  0 < 𝑏2 ≤ 𝑘 + 1. if 0 ≤ 𝑏1 ≤ 𝑘;  0 ≤ 𝑏2 ≤ 𝑘, then our inductive hypothesis guarantees that for each integer 

𝑡 ≥ 𝑘 + 2,  𝐶1
0 ∪ 𝐶2

0  can be written as a sum oft and hence, also of 𝑡 ≥ 𝑘 + 3real secondary orthogonal 

bimatrices. 

If 𝑘 < 𝑏1 ≤ 𝑘 + 1;  𝑘 < 𝑏2 ≤ 𝑘 + 1,we take a look at two cases: 

(i) 1 ≤ 𝑎1 ≤ 𝑘 + 1;  1 ≤ 𝑎2 ≤ 𝑘 + 1 and (ii)  0 ≤ 𝑎1 ≤ 1;  0 ≤ 𝑎2 ≤ 1; 

In case (i), set  𝐶1
1 ∪ 𝐶2

1 ≡  𝐶1
0 ∪ 𝐶2

0 −  𝐼1
℩℩ ∪ 𝐼2

℩℩  ; and in case (ii),  

set  𝐶1
1 ∪ 𝐶2

1 ≡  𝐶1
0 ∪ 𝐶2

0 −  𝐾1
℩℩ ∪ 𝐾2

℩℩ . 

 

Lemma 4.6 

 Let  𝐶1 ∪ 𝐶2 ∈ 𝑀2 ℝ  be given suppose that 𝑘 ≥ 2 is an integer such that  

𝜎1
1 𝐶1 ≤ 𝑘 and 𝜎2

1 𝐶2 ≤ 𝑘. Then for each integer 𝑡 ≥ 𝑘 + 2,  𝐶1 ∪ 𝐶2  can be written as a sum of t matrices 

from 𝑢2 ℝ . 

Let  𝐴1 ∪ 𝐴2 ∈ ℝ2𝑛  be given, and suppose that the bi singular values of  𝐴1 ∪ 𝐴2  are 𝜎1
1 ≥ ⋯ ≥

𝜎1
2𝑛 ≥ 0; 𝜎2

1 ≥ ⋯ ≥ 𝜎2
2𝑛 ≥ 0. 

Set  𝐷1 ∪ 𝐷2 ≡  𝑑𝑖𝑎𝑔 𝜎1
1, … , 𝜎1

2𝑛 ∪ 𝑑𝑖𝑎𝑔 𝜎2
1 , … , 𝜎2

2𝑛   
Write  𝐷1 ∪ 𝐷2 ≡  𝑑𝑖𝑎𝑔 𝜎1

1, … , 𝜎1
2 ⊕ …⊕ 𝑑𝑖𝑎𝑔 𝜎1

2𝑛−1, 𝜎1
2𝑛   

∪  𝑑𝑖𝑎𝑔 𝜎2
1, … , 𝜎2

2 ⊕ …⊕ 𝑑𝑖𝑎𝑔    𝜎2
2𝑛−1, 𝜎2

2𝑛   . 

Let 𝑘 ≥ 2 be an integer such that 𝜎1
1 𝐴 ≤ 𝑘; 𝜎2

1 𝐴2 ≤ 𝑘. Then Lemma 4.6 guarantees that for each 

integer 𝑡 ≥ 𝑘 + 2, and for each 𝑗 = 1, … , 𝑛, 𝑑𝑖𝑎𝑔 𝜎1
2𝑗−1

, 𝜎1
𝑗
 ∪ 𝑑𝑖𝑎𝑔 𝜎2

2𝑗−1
, 𝜎2

𝑗
 , can be written as a sum of t 

real secondary orthogonal bimatrices. We conclude that for each integer 𝑡 ≥ 𝑘 + 2,  𝐴1 ∪ 𝐴2  can be written as 

a sum of t real secondary orthogonal bimatrices. 
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Theorem 4.7 

Let n be a positive integer, and let  𝐴1 ∪ 𝐴2 ∈ ℝ2𝑛be given. Suppose that 𝑘 ≥ 2is an integer such that 

𝜎1
1 𝐴1 ≤ 𝑘; 𝜎2

1 𝐴2 ≤ 𝑘. then for each integer 𝑡 ≥ 𝑘 + 2,  𝐴1 ∪ 𝐴2 can be written as a sum of t matrices in 

𝑢2𝑛 ℝ . 

 

Proof 

Let  𝐴1 ∪ 𝐴2 ∈ ℝ3×3be given.  

Suppose that  𝐴1 ∪ 𝐴2 =  𝑃1 ∪ 𝑃2  𝛴1 ∪ 𝛴2  𝑄1 ∪ 𝑄2 , with  𝑃1 ∪ 𝑃2 ,  𝑄1 ∪ 𝑄2 ∈ 𝑂3 ℝ  and  𝛴1 ∪ 𝛴2 =
 𝑑𝑖𝑎𝑔 𝑎1 , 𝑏1 , 𝑐1 ∪ 𝑑𝑖𝑎𝑔 𝑎2, 𝑏2 , 𝑐2   with 0 ≤ 𝑐1 ≤ 𝑏1 ≤ 𝑎1 ≤ 2; 0 ≤ 𝑐2 ≤ 𝑏2 ≤ 𝑎2 ≤ 2. 

If  𝑎1 = 𝑎2 = 2,then notice that  𝑑𝑖𝑎𝑔 𝑏1 , 𝑐1 ∪ 𝑑𝑖𝑎𝑔 𝑏2 , 𝑐2   can be written as a sum of four secondary 

orthogonal bimatrices. One checks that  𝛴1 ∪ 𝛴2  can be written as a sum of four real secondary orthogonal 

bimatrices. 

Suppose 𝑎1 < 2; 𝑎2 < 2. if 𝑐1 = 𝑐2 = 0,then  𝛴1 ∪ 𝛴2  can be written as a sum of four secondary 

orthogonal bimatrices. If  𝑐1 = 𝑐2 = 2, then  𝐴1 ∪ 𝐴2  is a sum of two secondary orthogonal bimatrices. If 

0 ≠ 𝑐1 < 2;  0 ≠ 𝑐2 < 2, then, choose 𝜃1, 𝜃2 that 2 𝐶𝑜𝑠 𝜃1 = 𝑐1; 2 𝐶𝑜𝑠 𝜃2 = 𝑐2. 

 Notice that   𝐴1 𝜃1 + 𝐴1 −𝜃1  ∪  𝐴2 𝜃2 + 𝐴2 −𝜃2   = 2 𝐶𝑜𝑠 𝜃1𝐼1
℩℩ ∪ 𝐶𝑜𝑠 𝜃2𝐼2

℩℩  

Set  𝑈1
℩ ∪ 𝑈2

℩  =   1 ⊕ 𝐴1 𝜃1  ∪   1 ⊕ 𝐴2 𝜃2   and 

set  𝑈1
℩℩ ∪ 𝑈2

℩℩ =   −1 ⊕ 𝐴1 −𝜃1  ∪   −1 ⊕ 𝐴2 −𝜃2  .   

Then  𝛴1 ∪ 𝛴2 −   𝑈1
℩ ∪ 𝑈1

℩℩ +  𝑈2
℩ ∪ 𝑈2

℩℩  =  𝑑𝑖𝑎𝑔 𝑎1 , 𝑏1 − 𝑐1 , 0 ∪ 𝑑𝑖𝑎𝑔 𝑎2, 𝑏2 − 𝑐2 , 0  , which can 

be written as a sum of four real secondary orthogonal bimatrices. Hence,  𝐴1 ∪ 𝐴2  can be written as a sum of 

six real secondary orthogonal bimatrices.  
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