ON WEAK AND STRONG INDEXERS OF GRAPHS

Shankaran P.
N.M.A.M.Institute of Technology, Nitte-574110,Karnataka,India.

Abstract

A (p, q)-graph G is said to be strongly k-indexable, if its vertices can be assigned distinct nonnegative integers $0,1,2, \ldots, p-1$ so that the values of the edges, obtained as the sum of the numbers assigned to their end vertices can be arranged in the arithmetic progression $k, k+1, k+2, \ldots k+(q-1)$. In this paper we introduce and study weakly indexable graphs: a graph G is said to be weakly k-indexable, if its vertices can be assigned distinct nonnegative integers $0,1,2, \ldots, p-1$ so that the values of the edges, obtained as the sum of the numbers assigned to their end vertices form the multiset of numbers $k, k+1, k+2, \ldots, k+t$ where t is a positive integer less than q-1. In this paper, we obtain some necessary conditions on weakly k-indexable graphs, strongly k-indexable graphs and investigate classes of graphs which admit weak or strong indexers.

Keywords:Indexer, weak indexer, strong indexer.
2000 Mathematics subject classification: 05c78.

1. Introduction

For terminology and notation in graph theory we follow Harary [6] and West [9].
Given a graph $G=(V, E)$, the set N of nonnegative integers, a subset A of N and a commutative binary operation $\quad *: N \times N \rightarrow N$, every vertex function $f: V(G) \rightarrow A \quad$ induces an edge function $f^{*}: E(G) \rightarrow N$ such that $f^{*}(u v)=*(f(u), f(v)), f(u) * f(v), \forall u v \in E(G)$. Often it is of interest to determine the vertex functions fhaving a specified property P such that the induced edge functions f^{*} have a specified property Q, where P and Q need not necessarily be distinct. In this paper, we are interested in the study of vertex functions f, for which the induced edge function f^{*} defined as $f^{*}(u v)=f(u)+f(v), \forall u v \in E(G)$. Such vertex functions are said to be additive and henceforth this particular induced map f^{*} of f will be denoted f^{+}. A vertex function f is said to be an additive labeling if both f and f^{+}are injective.

We adopt the following notations throughout this paper.
$f(G)=\{f(u): u \in V(G)\}$
$f^{+}(G)=\left\{f^{+}(e): e \in E(G)\right\}$

Acharya and Hegde [2,7] have introduced the concepts of indexable and strongly indexable graphs: A graph $G=$ (V, E) is said to be (k, d)-indexable if it admits a (k, d)-indexer, namely, a bijection $f: V(G) \rightarrow\{0,1,2, \ldots, p-1\}$ such that $f^{+}(G) \subseteq\{k, k+d, k+2 d, \ldots, k+(q-1) d\}$. When $k=d=1, f$ is called an indexer. If $f^{+}(G)=\{k, k+d, k+2 d, \ldots, k+(q-1) d\}$, then f is called a strong (k, d)-indexer. If $d=1$, then a strong (k, d)-indexer fis called a strong k-indexer and G is said to be strongly k-indexable if it admits such an indexer for some k. If $k=d=1$, then f is called a strong indexer and G is said to be strongly indexable if it admits such an indexer. An additive labeling f of a graph G is said to be an indexable labeling if $f: V(G) \rightarrow\{0,1,2, \ldots, p-1\}$ such that the values in $f^{+}(G)$ are all distinct. A graph which admits such a labeling is called an indexable graph.

In this paper we introduce the concept of weak indexer: $\mathrm{A}(k, d)$ indexer fis called a weak (k, d)-indexer, if edge values form the multiset $M(G)=\{k, k+d, k+2 d, \ldots, k+t d\}$, where t is a positive integer $<q-1$. A graph G which admits such an indexer for some k and d, is called a weakly (k, d)-indexable graph. If $d=1$, then f is called a weak k - indexer. A graph which admits such an indexer f for some k, is called a weakly k-indexable graph. If $k=d=1$, then f is called a weak indexer. A graph which admits such an indexerf is called a weakly indexable graph. If $t=q-1$, then f becomes a strong (k, d)-indexer. In this paper, we obtain some necessary

Volume - 02, Issue - 03, March-2017, PP - 28-42
conditions on weakly k-indexable graphs, strongly k-indexable graphs and investigate classes of graphs which admit weak or strong indexers.

One can observe that for a weakly k-indexable graph G,

$$
k \leq f^{+}(e) \leq k+2 p-4 .
$$

It follows from the definition that, every strongly indexable graph is indexable, but not the converse. For example, one can see that C_{4} with the vertex labels $(0,1,3,2)$ is an indexable graph but not strongly indexable (it is known from [8], that even cycles are not strongly indexable). Note that there are graphs, which are both strongly as well as weakly indexable. That means, they are label dependent. For example $K_{2}+\overline{K_{2}}$ if vertices of the common edge are labeled 1 and 2 (or 0 and 1) and the other two vertices are labeled 0 and 3 (or 2 and 3), we get the required strongly (or weakly) indexable graph. Also the graphs C_{3} and $K_{1, n}$ are examples for strongly indexable but not weakly indexable. The cycle C_{4} with the labels $(0,3,1,2)$ is an example for a weakly 2 -indexable graph, which is not strongly k-indexable. The disconnected graph $2 C_{3}$ with the labels ($0,1,2$), (3,4,5) is an example for an indexable graph which is neither strongly indexable nor weakly indexable. Therefore, it is interesting to study weakly indexable graphs and strongly indexable graphs.

Theorem 1[1]. For any graph $G=(V, E)$ and for any additive vertex function $f: V(G) \rightarrow N$,

$$
\begin{equation*}
\sum_{e \in E(G)} f^{+}(e)=\sum_{u \in V(G)} f(u) d(u) \tag{1}
\end{equation*}
$$

Theorem 2 [2] . For any (k, d)-indexable (p, q)-graph G,
$q \leq \frac{(2 p-3-k+d)}{d}$
If $d=1$, then $k+q-1 \leq 2 p-3$.
We recall the following definitions.
Definition 1 [4]. A complete r-partite graph is obtained by partitioning the vertex set into r sets and joining two vertices if and only if they lie in different sets. If all of these sets have size k, then the resulting graph is denoted by $K_{r}(k)$.

Definition 2. A cycle with n-pendant edges attached at each vertex is called the n-crown, denoted as $C_{m} \Theta \overline{K_{n}}$.
Definition 3. A helm is obtained from a wheel $\left(W_{n}=C_{n}+K_{1}\right)$ by attaching pendant edges to each of the rim vertices of the cycle.

Definition 4. The generalized closed helm $C H(t, n), t \geq 2, n \geq 3$ is obtained from a helm by joining the pendant vertices to form a cycle such that it contains t cycles and n vertices.

Definition 5. The generalized wheel is defined as $W_{m, n}=C_{n}+K_{m}$.

2. Weakly Indexable Graphs

In this section, we study the structural properties of weakly k-indexable graphs and the graphs admitting such a labeling.

Lemma 1. For a connected weakly k-indexable (p, q)-graph G,

$$
1 \leq k \leq 2 p-t-3 .
$$

Proof. According to the definition, $f^{+}(G)=\{k, k+1, k+2, \ldots, k+t\}, t<q-1$. Since the maximum edge

Volume - 02, Issue - 03, March - 2017, PP - 28-42
value is $2 p-3$,
$k+t \leq 2 p-3$

$$
\Rightarrow \quad k \leq 2 p-t-3
$$

Therefore

$$
1 \leq k \leq 2 p-t-3
$$

Theorem 3 . Every connected weakly indexable graph contains a triangle.
Proof. Let $G=(V, E)$ be a weakly indexable (p, q)-graph with a weak indexer f. Let G contains at least four vertices. Observe that the edge values $1,2,2 p-4$ and $2 p-3$ can be obtained only by one choice of the pair $(0,1)$, $(0,2),(p-3, p-1)$ and $(p-2, p-1)$ respectively, i.e. $1=0+1,2=0+2,2 p-4=p-3+p-1,2 p-3=p-2+p-1$. But the edge values $3,4, \ldots, 2 p-5$ can be obtained by more than one choice of a pair (a, b). Since G is weakly indexable, at least one of the values $3,4, \ldots, 2 p-5$ recurs. Without loss of generality, we can assume that either 3 or $2 p-5$ recurs.

Suppose 3 occurs twice. That means the pair $(0,3)$ and $(1,2)$ are joined by lines. Then, it follows that $0,1,2$ forms a triangle.

On the other hand, if $2 p-5$ occurs twice. That means the pairs $(p-4, p-1)$ and ($p-3, p-2$) are joined by lines. But, then ($0, p-4, p-1$) and ($0, p-3, p-2$) form triangles. Therefore, every connected weakly indexable graph contains a triangle. Hence the proof.

From the above theorem, it follows that the class of connected triangle-free graphs are not weakly indexable. This infinite class contains all bipartite graphs, cycles etc. Hence, if a unicyclic graph is weakly indexable, then its unique cycle must be a triangle.

Corollary 3.1. If G is a connected weakly indexable (p, q)-graph, then $4 \leq p \leq q$.
Proof. From the above theorem, it can be observed that every weakly indexable graph must contain at least four vertices. Since a tree is not weakly indexable, $q \geq p$ so that $4 \leq p \leq q$.

Corollary 3.2. If G is a weakly indexable graph with a triangle, then any weak indexer of G must assign 0 to a vertex of a triangle in G.

Theorem 4 . If $K_{a, b}, 2 \leq a \leq b$ is weakly k-indexable, then $k \leq b$.

Proof. Let $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$ and $V_{2}=V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{b}\right\}$ be the bipartition of $K_{a, b}$, where $|A|=a,|B|=b$. Note that $f\left(K_{a, b}\right)$ contains the numbers from 0 to $a+b-1$. Suppose $K_{a, b}, 2 \leq a \leq b$ is weakly k-indexable for $k>b$. Without loss of generality, assign the number 0 to a vertex of V_{2}. Then the numbers $1,2, \ldots, b$ are to be assigned to the vertices of V_{2}. Since there are only b-vertices in V_{2}, the number b has to be assigned to a vertex of V_{1}. This implies an induced edge value b, which is a contradiction to our assumption that $k>\mathrm{b}$. Thus, k cannot be greater than b. Hence if $K_{a, b}, 2 \leq a \leq b$ is weakly k-indexable, then $k \leq b$.

Theorem 5. If G is an r-regular weakly k-indexable $(k>1)(p, q)$-graph, then
$\left\lceil\frac{1\{r p(4 p-r p-2)+16\}}{4 r p}\right\rceil \leq k \leq\left\lfloor\frac{1\left(r p^{2}-2 r p+2\right)}{r p}\right\rfloor$.
Proof. Let $G=(V, E)$ be an r-regular weakly $k(>1)$-indexable (p, q)-graph. Without loss of generality, we can assume that either $k+1$ or $k+q-3$ recurs. Suppose $(k+1)$ occurs $(q-1)$ times, i.e. $f^{+}(G)=\{k, k+1, k+1, \ldots q-1$ times $\}$. Using equation (1), we get

$$
\begin{aligned}
& \sum_{i=0}^{p-1} r f(u) \geq k+(k+1)(q-1) \\
& r \sum_{i=0}^{p-1} i \geq k q+q-1 \\
& \frac{r p(p-1)}{2} \geq k q+q-1
\end{aligned}
$$

But, for an r-regular graph, $q=\frac{r p}{2}$

$$
\begin{aligned}
& \frac{r p(p-1)}{2} \geq \frac{k r p}{2}+\frac{r p}{2}-1 \\
& \Rightarrow \quad r p^{2}-2 r p+2 \geq k r p
\end{aligned}
$$

$\Rightarrow \quad k r p \leq r p^{2}-2 r p+2$,
From which we get

$$
\begin{equation*}
k \leq\left\lfloor\frac{1\left(r p^{2}-2 r p+2\right)}{r p}\right\rfloor \tag{3}
\end{equation*}
$$

If, on the other hand, $k+q-3$ occurs twice, then from equation (1), we get
$\frac{r p(p-1)}{2} \leq k+k+1+k+2+\ldots+k+q-4+k+q-3+k+q-3+k+q-2$
$\frac{r p(p-1)}{2} \leq q^{2}+2 k q-q-4$
Using $q=\frac{r p}{2}$, we get $\frac{r p^{2}-r p}{2} \leq \frac{(r p)^{2}}{4}-\frac{r p}{2}+k r p-4$
$4 r p^{2}-r^{2} p^{2}-2 r p+16 \leq 4 k r p$
$r p(4 p-r p-2)+16 \leq 4 k r p$
From, which we get

$$
\begin{equation*}
k \geq\left\lceil\frac{1\{r p(4 p-r p-2)+16\}}{4 r p}\right\rceil \tag{4}
\end{equation*}
$$

From equation (3) and (4), we get
$\left\lceil\frac{1\{r p(4 p-r p-2)+16\}}{4 r p}\right\rceil \leq k \leq\left\lfloor\frac{1\left(r p^{2}-2 r p+2\right)}{r p}\right\rfloor$.
This completes the proof.
For example: The 3-regular graph as shown in Figure 1 is both weakly 2-indexable (see Fig. 1 a) as well as weakly 3 -indexable (see Fig.1b)). But one can verify that it is not weakly 4 -indexable.

Figure 1: Weakly 2 -indexable and weakly 3 -indexable labelings.

Theorem 6 . The complete graph $K_{p}, p>3$ is weakly indexable.
Proof. Denote the vertex set of the complete graph of order $p ; K_{p}$ as $V\left(K_{p}\right)=\left\{v_{i}: 0 \leq i \leq p-1\right\}$. Define,

$$
f\left(v_{i}\right)=i, 0 \leq i \leq p-1 .
$$

Then, one can easily observe that when p is even, the edge values $(1,2),(3,4),(5,6), \ldots,(p-3, p-2),(p-1, p)$; $(p+1, p+2), \ldots,(2 p-6,2 p-5),(2 p-4 ; 2 p-3)$ occur respectively $(1,1),(2,2),(3,3), \ldots,\left(\frac{p-2}{2}, \frac{p-2}{2}\right)$, $\left(\frac{p}{2}, \frac{p-2}{2}\right),\left(\frac{p-2}{2}, \frac{p-4}{2}\right), \ldots(2,2),(1,1)$ times. when p is odd, the edge values $(1,2),(3,4),(5,6), \ldots,(p-1$, $p), \ldots,(2 p-6,2 p-5),(2 p-4 ; 2 p-3)$ occur respectively $(1,1),(2,2),(3,3), \ldots,\left(\frac{p-1}{2}, \frac{p-1}{2}\right), \ldots,(2,2),(1,1)$ times. Note that $f^{+}\left(K_{p}\right)$ contains edge values from 1 to $2 p-3$. Hence K_{p} is weakly indexable.

Next, we give a method to recursively enlarge a weakly indexable graph G to a weakly indexable graph H of higher order.

Denote the vertex set of the complete graph of order $p ; K_{p}$ as $V\left(K_{p}\right)=\left\{v_{i}: 0 \leq i \leq p-1\right\}$. Define the function f as above. Introduce $\overline{K_{t}}, t \geq 1$ new vertices and join them to each vertex of K_{p} by single new lines. Assign the values $p+t-1$ to the newly introduced vertices in a one-to-one manner. One can see that the resulting graph is weakly indexable with edge values from 1 to $2 p+t-2$.

Theorem 7. For any integer $t \geq 2, r>2$, the complete r-partite graph $\mathrm{K}_{\mathrm{r}}(t)$ is weakly k-indexable, where $k=t$.

Proof. Note that the complete r-partite graph for $t=1$, is nothing but the complete graph K_{r}, which is weakly indexable for $r>3$. Let $r>2, t \geq 2$. Note that $K_{r}(t)$ contains $r t$ vertices and $\underset{2}{C} . t^{2}$ edges. Let $A_{1}=\left\{u_{1,1}, u_{1,2}, \ldots, u_{1, t}\right\}, A_{2}=\left\{u_{2,1}, u_{2,2}, \ldots, u_{2, t}\right\}, \ldots, A_{r}=\left\{u_{r, 1}, u_{r, 2}, \ldots, u r, t\right\}$ be the r-partitions, each of size t. Define,

$$
f\left(u_{i, j}\right)=(i-1) t+j-1,1 \leq i \leq r, 1 \leq j \leq t .
$$

Then one can verify that $f^{+}\left(K_{r}(t)\right)$ contains the edge values from t to $2 r t-t-2$ where the middle term $r t-1$ occurs $\frac{r t}{2}$ times where r is even and $\left\lfloor\frac{r}{2}\right\rfloor . t$ times when r is odd.
Theorem 8. The helm H_{n} is weakly k-indexable, where $k=\frac{3 n-1}{2}$ if n is odd $\frac{n}{2}$ and if n is even.
Proof.Let H_{n} be the helm. Note that H_{n} has $2 n+1$ vertices and $3 n$ edges. Denote the rim vertices of H_{n} as
$v_{1,1}, v_{1,2}, \ldots, v_{1, n}$; the pendant vertices adjacent to $v_{1,1}, v_{1,2}, \ldots, v_{1, n}$ as $v_{2,1}, v_{2,2}, \ldots, v_{2, n}$ and the centre as $v_{0,0}$. We consider two cases.
Case 1: n odd.

Define,

$$
f\left(v_{1, j}\right)=\left\{\begin{array}{l}
2 n-\frac{(j+1)}{2}, j \text { odd }, 1 \leq j \leq n \\
\frac{3 n-j-1}{2}, j \text { even } 2 \leq j \leq n-1
\end{array}\right.
$$

$$
f\left(v_{2, j}\right)=j-1,1 \leq j \leq n
$$

$f\left(v_{0,0}\right)=2 n$.
Then one can verify that $f^{+}\left(H_{n}\right)=\left\{\frac{3 n-1}{2}, \frac{3 n+1}{2}, \ldots, 4 n-1\right\}$, where the edge values $3 n, 3 n+1, \ldots, \frac{7 n-3}{2}$ occur two times. Therefore H_{n} is weakly k-indexable $k=\frac{3 n-1}{2}$ for n is odd.
Case2 : n even.

Define, $f\left(v_{1, j}\right)=\left\{\begin{array}{l}\frac{(j-1)}{2}, j \text { odd }, 1 \leq j \leq n-1 \\ \frac{n+j-2}{2}, j \text { even } 2 \leq j \leq n\end{array}\right.$
$f\left(v_{2,1}\right)=2 n$
$f\left(v_{2, j}\right)=\left\{\begin{array}{l}\frac{(3 n+j-1)}{2}, j \text { odd }, 3 \leq j \leq n-1 \\ n+\frac{j}{2}, j \text { even } 2 \leq j \leq n\end{array}\right.$
$f\left(v_{0,0}\right)=n$.
Then one can verify that $f^{+}\left(H_{n}\right)=\left\{\frac{n}{2}, \frac{n+2}{2}, \ldots, \frac{5 n-2}{2}\right\}$, where the edge values $\left(n-1, n, \ldots, \frac{3 n-4}{2}\right)$
$\left(\frac{3 n+2}{2}, \frac{3 n+4}{2}, \ldots, 2 n\right)$ occur two times. Therefore H_{n} is weakly k-indexable $k=\frac{n}{2}$ for n is even.

Fig.2: Weakly 7-indexable labeling of H_{5}.

Theorem 9. If G is a weakly (1,2)-indexable tree, then there exists a partition of $V(G)$ in to two parts V_{1} and V_{2} such that $\left|V_{1}\right|-\left|V_{2}\right| \leq 1$.
Proof. Suppose that G is a weakly (1,2)-indexable tree. Then $f^{+}(G)$ contains all odd numbers $1,3, \ldots, 2 q$ 1.Without loss of generality,let $V_{1}=\{u: f(u) \equiv 0(\bmod 2)\}, V_{2}=\{v: f(v) \equiv 1(\bmod 2)\}$. Since $f(G)=\{0,1, \ldots, p-1\}$, the number of even numbers in this set is equal to zero or one more than the number of odd numbers. Hence $\left|V_{1}\right|-\left|V_{2}\right| \leq 1$.

But one can easily verify that the sub division graph of $K_{1,3}$ is not weakly (1,2)-indexable and hence the converse is not necessarily true.
Theorem 10. The disjoint union of cycles, ${ }^{m} C_{n}$ is weakly ($k, 2$)-indexable for
i) m even $\geq 2, n$ even ≥ 4
ii) m even $\geq 2, n$ odd ≥ 3
where $k=\frac{m n}{2}$ when n is even and $k=\frac{m(n-1)}{2}$ when n is odd.
Proof. Let ${ }^{m} C_{n}$ denote the disjoint union of m cycles. Denote $V\left({ }^{m} C_{n}\right)$ as $V_{1} \cup V_{2} \cup . . \cup V_{m}$ where $V=\left\{v_{i}^{1}, v_{i}^{2}, \ldots, v_{i}^{n}: 1 \leq i \leq m, 1 \leq j \leq n\right\}, v_{i}^{j}$ is the j th vertex of i th cycle. We consider two cases.

Define $f: V\left({ }^{m} C_{n}\right) \rightarrow\{0,1,2, \ldots, m n-1\}$ as follows.
Case 1: m even n even ≥ 4.
Define, $\quad f\left(v_{i}^{2 j+1}\right)=j m+i-1,1 \leq i \leq m, 0 \leq j \leq \frac{n-2}{2}$
$f\left(v_{i}^{2 j}\right)=m\left(\frac{n}{2}+j-1\right), 1 \leq i \leq m, 1 \leq j \leq \frac{n}{2}$.

Then one can see that $f^{+}\left({ }^{m} C_{n}\right)$ contains edge values from $\frac{m n}{2}$ to $\frac{3 m n-4}{2}$ (which are even numbers)where all even numbers from $m(n-1)$ to $m(n+1)-2$ occur at least twice. Hence ${ }^{m} C_{n} m$ even $\geq 2, n$ even ≥ 4 is weakly ($k, 2$)-indexable where $k=\frac{m n}{2}$.
Case 2: m even $\geq 2, n$ odd ≥ 3
Define, $f\left(v_{i}^{2 j+1}\right)=j m+i-1,1 \leq i \leq m, 0 \leq j \leq \frac{n-1}{2}$
$f\left(v_{i}^{2 j}\right)=m\left(\frac{n+1}{2}+j-1,1 \leq i \leq m, 1 \leq j \leq \frac{n-1}{2}\right.$.
Then one can see that $f^{+}\left({ }^{m} C_{n}\right)$ contains edge values from $\frac{m(n-1)}{2}$ to $\frac{3 m n+m}{2}-2$ (which are even numbers) where all even numbers from $\frac{m(n+1)}{2}$ to $\frac{m(3 n-1)}{2}-2$ occur twice. Hence ${ }^{m} C_{n} m$ even ≥ 2, n odd ≥ 3 is weakly $(k, 2)$-indexable where $k=\frac{m(n-1)}{2}$.
Theorem 11.The disconnected graph $G=P_{t} \cup C_{r}$ is weakly k-indexable, where
i) $k=2 m+n+2$, if $t=2 m+1, r=2 n+1, t<r$ and if $t=2 m+1, r=2 n, t<r$
ii) $k=2 m+n$ if $t=2 m, r=2 n, t<r$ and if $t=2 m, r=2 n+1, t<r$
iii) $k=m+2 n+2$ if $t=2 m+1, r=2 n+1, t>r$ and if $t=2 m+1, r=2 n+1, t=r$
iv) $k=m+2 n+1$, if $t=2 m+1, r=2 n, t>r$ and if $t=2 m, r=2 n+1, t>r$
v) $k=m+2 n$ if $t=2 m, r=2 n, t>r$ and if $t=2 m, r=2 n, t=r$.

Proof. Let P_{t} be a path ont-verticesand C_{r} be a cycle of length r. Denote the vertices of P_{t} as $u_{1}, u_{2}, \ldots, u_{t}$ and the vertices of C_{r} as $v_{1}, v_{2}, \ldots, v_{r}$. Note that $|V(G)|=t+r,|E(G)|=t+r-1$. We consider four cases.
Case 1: $t=2 m+1, r=2 n+1$.
Define $f: V(G) \rightarrow\{0,1,2, \ldots, t+r-1\}$ by

$$
\begin{aligned}
& f\left(u_{2 i+1}\right)=i, 0 \leq i \leq m \\
& f\left(u_{2 i}\right)=m+2 n+i+1,1 \leq i \leq m \\
& f\left(v_{2 j-1}\right)=m+j, 1 \leq j \leq n+1 \\
& f\left(v_{2 i}\right)=m+n+j+1,1 \leq j \leq n
\end{aligned}
$$

It can be easily verified that if $t<r$, then $f^{+}(G)$ contains edge values from $2 m+n+2$ to $2 m+3 n+2$, where the values from $m+2 n+2$ to $3 m+2 n+1$ occur twice. if $t=r$, then $f^{+}(G)$ contains edge values from $m+2 n+2$ to $2 m+3 n+2$, where the values from $m+2 n+2$ to $3 m+2 n+1$ occur twice. if $t>r$, then $f^{+}(G)$ contains edge values from $m+2 n+2$ to $3 m+2 n+1$, where the values from $2 m+n+2$ to $2 m+3 n+2$ occur twice.
Case 2: $t=2 m, r=2 n$.
Define $f: V(G) \rightarrow\{0,1,2, \ldots, t+r-1\}$ by
$f\left(u_{2 i+1}\right)=i, 0 \leq i \leq m-1$
$f\left(u_{2 i}\right)=m+2 n+i-1,1 \leq i \leq m$
$f\left(v_{2 j-1}\right)=m+j-1,1 \leq j \leq n$
$f\left(v_{2 i}\right)=m+n+j-1,1 \leq j \leq n$.

It can be easily verified that if $t<r$, then $f^{+}(G)$ contains edge values from $2 m+n$ to $2 m+3 n-2$, where the values from $m+2 n$ to $3 m+2 n-2$ occur twice. Ift $t=r$, then $f^{+}(G)$ contains edge values from $m+2 n$ to $3 m+2 n-2$, where all the values occur at least twice. if $t>r$, then $f^{+}(G)$ contains edge values from $m+2 n$ to $3 m+2 n-2$, where the values from $2 m+n$ to $2 m+3 n-2$ occur at least twice.
Case 3: $t=2 m+1, r=2 n$.
Define $f: V(G) \rightarrow\{0,1,2, \ldots, t+r-1\}$ by
$f\left(u_{2 i+1}\right)=i, 0 \leq i \leq m$
$f\left(u_{2 i}\right)=m+2 n+i+1,1 \leq i \leq m$
$f\left(v_{2 j-1}\right)=m+j, 1 \leq j \leq n$
$f\left(v_{2 i}\right)=m+n+j, 1 \leq j \leq n$.
It can be easily verified that if $t<r$, then $f^{+}(G)$ contains edge values from $2 m+n+2$ to $2 m+3 n$, where the values from $m+2 n+1$ to $3 m+2 n$ occur at least twice. if $t>r$, then $f^{+}(G)$ contains edge values from $m+2 n+1$ to $3 m+2 n$, where the values from $2 m+n+2$ to $2 m+3 n$ occur at least twice.
Case 4: $t=2 m, r=2 n+1$.
Define $f: V(G) \rightarrow\{0,1,2, \ldots, t+r-1\}$ by
$f\left(u_{2 i+1}\right)=i, 0 \leq i \leq m-1$
$f\left(u_{2 i}\right)=m+2 n+i, 1 \leq i \leq m$
$f\left(v_{2 j-1}\right)=m+j-1,1 \leq j \leq n+1$
$f\left(v_{2 i}\right)=m+n+j, 1 \leq j \leq n$.
It can be easily verified that if $t<r$, then $f^{+}(G)$ contains edge values from $2 m+n$ to $2 m+3 n$, where the values from $m+2 n+1$ to $3 m+2 n-1$ occur twice. if $t>r$, then $f^{+}(G)$ contains edge values from $m+2 n+1$ to $3 m+2 n-1$, where the values from $2 m+n$ to $2 m+3 n$ occur twice.

3. Strongly Indexable Graphs

In this section, we study the classes of graphs admitting strongly indexablelabelings.
Theorem 12. If an r-regular graph is strongly k-indexable, then $r \leq 3$.
Proof.Let G be an r-regular strongly k-indexable graph with $r \geq 4$. Then $q=\frac{r p}{2} \geq 2 p$. This is a contradiction to equation (2) for any $k \geq 1$. Hence if an r-regular graph is strongly k-indexable, then $r \leq 3$.
Theorem 13[8]. A complete bipartite graph $K_{m, n}, m \leq n_{\text {is strongly }} k$-indexable if and only if $m=1$.
Next, we obtain a necessary and sufficient condition for the join $G_{1}+G_{2}$ of two graphs G_{1} and G_{2}.
Theorem 14. The join of two graphs G_{1} and G_{2} is strongly indexable if and only if
i)at least one of G_{1} and G_{2} has exactly two vertices and
ii) $G_{1} \cup G_{2}$ has exactly one edge.

Proof. Let G_{1} be a $\left(p_{1}, q_{1}\right)$-graph and G_{2} be a $\left(p_{2}, q_{2}\right)$-graph. Assume that $G_{1}+G_{2}$ is a strongly indexable graph with $p_{1} p_{2} \geq 2$. Let $\left|E\left(G_{1} \cup G_{2}\right)\right|=m$. Then $\left|V\left(G_{1}+G_{2}\right)\right|=p_{1}+p_{2}$ and $\left|E\left(G_{1}+G_{2}\right)\right|=m+p_{1} p_{2} \cdot$ Using equation (2), we get $m+p_{1} p_{2} \leq 2\left(p_{1}+p_{2}\right)-3$, which implies
$m+p_{1} p_{2}-2 p_{1}-2 p_{2} \leq-3$, so that $0 \leq\left(p_{1}-2\right)\left(p_{2}-2\right) \leq 1-m$
Thus $m \leq 1$. Note that if $m=0$, then $G_{1}+G_{2}$ is a complete bipartite graph, which is not stronglyindexableby Theorem 13. So m must be 1.That means $\left|E\left(G_{1} \cup G_{2}\right)\right|=1$. This in turn implies from equation (5) that $\left(p_{1}-2\right)\left(p_{2}-2\right)=0$. Therefore either p_{1} or p_{2} must be 2 .
For (ii), let $G=G_{1}+G_{2}$ be the join of the graphs G_{1} and $G_{2} \cdot$ Suppose $2=p_{1} \leq p_{2}$ and $\left|E\left(G_{1} \cup G_{2}\right)\right|=1$. Then, we have two cases depending on the unique edge of $G_{1} \cup G_{2}$ belonging to G_{1} or $G_{2} \cdot$ Hence the proof.
One can observe from Fig 3, that G is strongly indexable in both the cases.

Fig. 3: Two different cases of $G_{1}+G_{2}$
Theorem 15. For any even $m \geq 4, n \geq 1$, integer the n-crown $G=C_{m} \Theta \bar{K}_{n}$ is strongly k-indexable, where $k=\frac{m}{2}$.
Proof. Let $G=C_{m} \Theta \overline{K_{n}}$ be the n-crown. Assume that $m($ even $) \geq 4, n \geq 1$. Denote the vertex set of G as $V(G)=\{u: 1 \leq i \leq m\} \cup\left\{v_{i, j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and the edge set of G as $E(G)=\left\{u_{i} u_{i+1}: 1 \leq i \leq m-1\right\} \cup\left\{u_{1} u_{m}\right\} \cup\left\{u_{1} v_{i, j}: 1 \leq i \leq m, 1 \leq j \leq n\right\} \cdot{ }_{\text {Note }}|V(G)|=|E(G)|=$ $m(n+1)$. We proceed by the following eight cases.
Case 1:m=4.
Define the map

$$
\begin{aligned}
& f: V(G) \rightarrow\{0,1,2, \ldots, 4 n+3\}_{\text {such that }} \\
& f\left(u_{2 i-1}\right)=i-1, i=1,2 \\
& f\left(u_{2 i}\right)=3 i-1, i=1,2 \\
& f\left(v_{2 i-1,1}\right)=2(i+1), i=1,2 \\
& f\left(v_{2 i, 1}\right)=11-4 i, i=1,2 \\
& f\left(v_{i, j}\right)=4(j+1)-i, 1 \leq i \leq 4,2 \leq j \leq n
\end{aligned}
$$

Then one can verify that f extends to a strongly k-indexable labeling of G for $m=4$.
Case 2: $m=6$.
Define the map $f: V(G) \rightarrow\{0,1,2, \ldots, 6 n+5\}_{\text {such that }} f\left(u_{1}\right)=8, f\left(u_{2}\right)=0, f\left(u_{3}\right)=3, f\left(u_{4}\right)=1$,

Volume - 02, Issue - 03, March - 2017, PP - 28-42
$f\left(u_{5}\right)=4, f\left(u_{6}\right)=2, f\left(v_{1,1}\right)=5, f\left(v_{2,1}\right)=7, f\left(v_{3,1}\right)=6, f\left(v_{4,1}\right)=11, f\left(v_{5,1}\right)=10$,
$f\left(v_{6,1}\right)=9$,
$f\left(v_{i, j}\right)=\left\{\begin{array}{l}5 i+6 j-5,1 \leq i \leq 2,2 \leq j \leq n \\ i+6 j-2,3 \leq i \leq 6,2 \leq j \leq n .\end{array}\right.$
Then one can verify that f extends to a strongly k-indexable labeling of G for $m=6$
Case 3: $m=8$.
Define the map $f: V(G) \rightarrow\{0,1,2, \ldots, 8 n+7\}_{\text {such that }} f\left(u_{1}\right)=0, f\left(u_{2}\right)=4, f\left(u_{3}\right)=1, f\left(u_{4}\right)=5$, $f\left(u_{5}\right)=2, f\left(u_{6}\right)=6, f\left(u_{7}\right)=3, f\left(u_{8}\right)=11, f\left(v_{1,1}\right)=10, f\left(v_{2,1}\right)=12, f\left(v_{3,1}\right)=14$, $f\left(v_{4,1}\right)=13, f\left(v_{5,1}\right)=15, f\left(v_{6,1}\right)=7, f\left(v_{7,1}\right)=9, f\left(v_{8,1}\right)=8$, $f\left(v_{i, j}\right)=8(j+1)-i, 1 \leq i \leq 8,2 \leq j \leq n$.
Then one can verify that f extends to a strongly k-indexable labeling of G for $m=8$.
Case 4: $m=8 t+2$, where t is a positive integer.
Define the map $f: V(G) \rightarrow\{0,1,2, \ldots,(8 t+2)(n+1)-1\}$ such that

$$
\begin{gathered}
f\left(u_{w}\right)=\left\{\begin{array}{l}
12 t+2, \text { if } w=1 \\
4 t+i-1, \text { if } w=2 i-1,2 \leq i \leq 4 t+1 \\
i-1, \text { if } w=2 i, 1 \leq i \leq 4 t+1
\end{array}\right. \\
f\left(v_{w, 1}\right)=\left\{\begin{array}{l}
8 t+i, \text { if } w=2 i-1,1 \leq i \leq 2 t+2 \\
12 t+1, \text { if } w=2 \\
12 t+i+1, \text { if } w=2 i, 2 \leq i \leq 2 t \\
14 t+2 i+3, \text { if } w=4 t+4 i-2,1 \leq i \leq t \\
14 t-i+4, \text { if } w=4 t+i+3,1 \leq i \leq 2 \\
10 t+2 i+1, \text { if } w=4 t+4 i+3,1 \leq i \leq t-1 \\
14 t+2 i+2, \text { if } w=4 t+4 i+4,1 \leq i \leq t-1 \\
10 t+2 i+2, \text { if } w=4 t+4 i+5,1 \leq i \leq t-1 \\
16 t+2, \text { if } w=8 t+2
\end{array}\right.
\end{gathered}
$$

and for $2 \leq j \leq n$, we have

$$
\begin{aligned}
& f\left(v_{2 i-1, j}\right)=\left\{\begin{array}{l}
2(4 t+1) j+i-1,1 \leq i \leq 2 t+1 \\
2(4 t+1) j+i, 2 t+2 \leq i \leq 4 t+1
\end{array}\right. \\
& f\left(v_{2 i, j}\right)=\left\{\begin{array}{l}
(4 t+1)(2 j+1)+i-1,2 \leq i \leq 2 t \\
(4 t+1)(2 j+1)+i-2,2 t+2 \leq i \leq 4 t+1
\end{array}\right. \\
& f\left(v_{2, j}\right)=2(4 t+1)(j+1)-1 \\
& f\left(v_{4 t+2, j}\right)=2(4 t+1) j+2 t+1 .
\end{aligned}
$$

Then one can verify that f extends to a strongly k-indexable labeling of G for $m=8 t+2$.
Case $5: m=8 t+4$, where t is a positive integer.
Define the map $f: V(G) \rightarrow\{0,1,2, \ldots,(8 t+4)(n+1)-1\}$ such that

$$
\begin{aligned}
& f\left(u_{w}\right)=\left\{\begin{array}{l}
i-1, \text { if } w=2 i-1,1 \leq i \leq 4 t+2 \\
4 t+i+1, \text { if } w=2 i, 1 \leq i \leq 4 t+1 \\
12 t+5, \text { if } w=8 t+4
\end{array}\right. \\
& f\left(v_{w, 1}\right)=\left\{\begin{array}{l}
12 t+4, \text { if } w=1 \\
16 t-4 i+7, \text { if } w=4 i-2,1 \leq i \leq t \\
16 t-4 i+8, \text { if } w=4 i-1,1 \leq i \leq t \\
16 t-4 i+9, \text { if } w=4 i, 1 \leq i \leq t \\
16 t-4 i+6, \text { if } w=4 i+1,1 \leq i \prec t \\
8 t+3, \text { if } w=4 t+4 i+2 \\
16 t+7, \text { if } w=4 t+3 \\
16 t+6 \text { if } w=8 t+3 \\
8 t+4, \text { if } w=8 t+4 \\
12 t-i+4, \text { if } w=4 t+i+3,1 \leq i \leq 4 t-1
\end{array}\right. \\
& f\left(v_{i, j}\right)=4(2 t+1)(j+1)-i, 1 \leq i \leq 8 t+4,2 \leq j \leq n .
\end{aligned}
$$

Then one can verify that f extends to a strongly k-indexable labeling of G for $m=8 t+4$.
Case 6: $m=8 t+6$, where t is a positive integer.
Define the map $f: V(G) \rightarrow\{0,1,2, \ldots,(8 t+6)(n+1)-1\}$ such that

$$
\begin{aligned}
& f\left(u_{w}\right)=\left\{\begin{array}{l}
12 t+8, \text { if } w=1 \\
4 t+i+1, \text { if } w=2 i-1,2 \leq i \leq 4 t+3 \\
i-1, \text { if } w=2 i, 1 \leq i \leq 4 t+3
\end{array}\right. \\
& f\left(v_{w, 1}\right)=\left\{\begin{array}{l}
8 t+i+4, \text { if } w=2 i-1,1 \leq i \leq 2 t+3 \\
12 t+7, \text { if } w=2 \\
12 t+i+7, \text { if } w=2 i, 2 \leq i \leq 2 t+1 \\
14 t-2 i+13, \text { if } w=4 t+3 i+1,1 \leq i \leq 2 \\
14 t+2 i+11, \text { if } w=4 t+4 i+2,1 \leq i \leq t \\
14 t+2 i+8, \text { if } w=4 t+4 i+4,1 \leq i \leq t \\
10 t+2 i+6, \text { if } w=4 t+4 i+5,1 \leq i \leq t \\
10 t+2 i+7, \text { if } w=4 t+4 i+7,1 \leq i \leq t-1 \\
16 t+10, \text { if } w=8 t+6
\end{array}\right. \\
& f\left(v_{w, j}\right)=\left\{\begin{array}{l}
2(4 t+3) j+i-1, \text { if } w=2 i-1,1 \leq i \leq 4 t+3,2 \leq j \leq n \\
(4 t+3)(2 j+1)+i-1, \text { if } w=2 i, \quad 1 \leq i \leq 4 t+3,2 \leq j \leq n .
\end{array}\right.
\end{aligned}
$$

Then one can verify that f extends to a strongly k-indexable labeling of G for $m=8 t+6$.
Case 7: $m=16 t$, where t is a positive integer.
Define the map

$$
f: V(G) \rightarrow\{0,1,2, \ldots, 16 t(n+1)-1\}
$$

such that

Volume - 02, Issue - 03, March - 2017, PP - 28-42

$$
\begin{aligned}
& f\left(u_{w}\right)=\left\{\begin{array}{l}
i-1, \text { if } w=2 i-1,1 \leq i \leq 8 t \\
8 t+i-1, \text { if } w=2 i, 1 \leq i \leq 8 t-1 \\
24 t-1, \text { if } w=16 t
\end{array}\right. \\
& f\left(v_{1,1}\right)=24 t-2, f\left(v_{2,1}\right)=16 t+2, f\left(v_{3,1}\right)=32 t-2, \\
& f\left(v_{w, 1}\right)=\left\{\begin{array}{l}
32 t-2 i, \text { if } w=2 i-1,3 \leq i \leq 4 t \\
32 t-2 i+1, \text { if } w=2 i, 2 \leq i \leq 4 t \\
32 t-3 i+2, \text { if } w=8 t+2 i-1,1 \leq i \leq 2 \\
24 t-8 i+4, \text { if } w=8 t+8 i-6,1 \leq i \leq t \\
24 t-8 i+5, \text { if } w=8 t+8 i-4,1 \leq i \leq t \\
24 t-8 i+3, \text { if } w=8 t+8 i-3,1 \leq i \leq t \\
24 t-8 i-1, \text { if } w=8 t+8 i-2,1 \leq i \leq t \\
24 t+8 i+1, \text { if } w=8 t+8 i-1,1 \leq i \leq t \\
24 t-8 i, \text { if } w=8 t+8 i, 1 \leq i \leq t \\
24 t-8 i+2, \text { if } w=8 t+8 i+1,1 \leq i \leq t-1 \\
24 t-8 i-2, \text { if } w=8 t+8 i+3,1 \leq i \leq t-1
\end{array}\right.
\end{aligned}
$$

$$
f\left(v_{i, j}\right)=16 t(j+1)-i, 1 \leq i \leq 16 t, 2 \leq j \leq n
$$

Then one can verify that f extends to a strongly k-indexable labeling of G for $m=16 t$.
Case 8: $m=16 t+8$, where t is a positive integer.
Define the map

$$
\begin{aligned}
& f: V(G) \rightarrow\{0,1,2, \ldots,(16 t+8)(n+1)-1\} \\
& f\left(u_{w}\right)=\left\{\begin{array}{l}
i-1, \text { if } w=2 i-1,1 \leq i \leq 8 t+4 \\
8 t+i+3, \text { if } w=2 i, 1 \leq i \leq 8 t+3 \\
24 t+11, \text { if } w=16 t+8
\end{array}\right. \\
& f\left(v_{1,1}\right)=24 t+10, f\left(v_{2,1}\right)=16 t+10, f\left(v_{3,1}\right)=32 t+14,
\end{aligned}
$$

Volume - 02, Issue - 03, March - 2017, PP - 28-42
$f\left(v_{w, 1}\right)=\left\{\begin{array}{l}32 t-2 i+16, \text { if } w=2 i-1,3 \leq i \leq 4 t+2 \\ 32 t-2 i+17, \text { if } w=2 i, 2 \leq i \leq 4 t+2 \\ 32 t-3 i+18, \text { if } w=8 t+2 i+3,1 \leq i \leq 2 \\ 24 t-8 i+15, \text { if } w=8 t+8 i-2,1 \leq i \leq t+1 \\ 24 t-i+10, \text { if } w=8 t+i+7,1 \leq i \leq 2 \\ 24 t-8 i+12, \text { if } w=8 t+8 i+2,1 \leq i \leq t \\ 24 t-8 i+14, \text { if } w=8 t+8 i+3,1 \leq i \leq t \\ 24 t-8 i+13, \text { if } w=8 t+8 i+4,1 \leq i \leq t \\ 24 t-8 i+11, \text { if } w=8 t+8 i+5,1 \leq i \leq t \\ 24 t-8 i+9, \text { if } w=8 t+8 i+7,1 \leq i \leq t \\ 24 t-8 i+8, \text { if } w=8 t+8 i+8,1 \leq i \leq t \\ 24 t-8 i+10, \text { if } w=8 t+8 i+9,1 \leq i \leq t-1\end{array}\right.$
$f\left(v_{i, j}\right)=(16 t+8)(j+1)-i, 1 \leq i \leq 16 t+8,2 \leq j \leq n$.
Then one can verify that f extends to a strongly k-indexable labeling of G for $m=16 t+8$. Therefore G is strongly k - indexable for $k=\frac{m}{2}$.

Fig.4: Strongly 2-indexable labeling of $C_{4}+K_{2}^{-}$.
Theorem 16.For any odd integer $m \geq 3, n \geq 1$, the n-crown $G=C_{m} \Theta \overline{K_{n}}$ is strongly k-indexable, where $k=\frac{m-1}{2}$.
Proof. Let $G=C_{m} \Theta \overline{K_{n}}$ be the n-crown. Let m (odd) $m \geq 3, n \geq 1$. Denote the vertex set of G as $V(G)=\left\{u_{i}: 1 \leq i \leq m\right\} \cup\left\{v_{i, j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and \quad the edge set of $\quad G \quad$ as $E(G)=\left\{u_{i} u_{i+1}: 1 \leq i \leq m-1\right\} \cup\left\{u_{1} u_{m}\right\} \cup\left\{u_{i} v_{i, j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$. Notethat $|V(G)|=|E(G)|=$ $\mathrm{m}(\mathrm{n}+1)$.
Define the map $f: V(G) \rightarrow\{0,1,2, \ldots, m(n+1)-1\}$ such that

Volume - 02, Issue - 03, March - 2017, PP - 28-42
$f\left(u_{i}\right)=\left\{\begin{array}{l}\frac{i-1}{2}, \text { for } i \text { odd, } 1 \leq i \leq m \\ \frac{n+i-1}{2}, \text { for } i \text { even } 2 \leq i \leq m-1\end{array}\right.$
$f\left(v_{i, j}\right)=\left\{\begin{array}{l}n j+\frac{n+i}{2}, \text { for } \text { i odd, } 1 \leq i \leq m-2,1 \leq j \leq n \\ n j+\frac{i}{2}, \text { for } i \text { even } 2 \leq i \leq m-1,1 \leq j \leq n\end{array}\right.$
$f\left(v_{n, j}\right)=n j, 1 \leq j \leq n$.
Then one can easily verify that the map f extends to a strongly k-indexable labeling of G, where $k=\frac{m-1}{2}$.

Conclusions

In this paper we obtained some classes of graphs which admit weak and strong indexers. Also we could obtain necessary conditions on weakly k-indexable and strongly k-indexable graphs.

Acknowledgement

We would like to thank SudhakarShetty for his valuable suggestions during the preparation of this paper.

References

[1] B.D. Acharya and S. M. Hegde, "Arithmetic graphs", Journal of Graph Theory, Vol. 14 (3) (1990), 275299.
[2] B.D. Acharya and S. M. Hegde, "Strongly indexable graphs", Discrete Mathematics 93 (1991), 123-129.
[3] B.D. Acharya and S. M. Hegde, "On certain vertex valuation of a graph", Indian Journal of Pure and Applied Mathematics, 22(7) (1991), 553-560.
[4] L.W. Beineke and Robin J. Wilson, "Selected Topics in Graph Theory", Academic Press Ltd., London (1988).
[5] J.A. Gallian, "A Dynamic Survey of Graph Labeling", The Electronic Journal of Combinatorics \#DS 6(2005),pp.1-148.
[6] F. Harary, "Graph Theory", Addison Wesley, Reading MA (1969).
[7] S.M. Hegde, "On indexable graphs", Journal of Combinatorics, Information and System Sciences, Vol.17, Nos. 3-4, (1992), 316-331.
[8] SudhakarShetty, Ph.D. Thesis, National Institute of Technology Karnataka (2004).
[9] D.B. West, "Introduction to Graph Theory", Second EditionPrenticeHall (2001).

