International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 2455-7137

Volume — 03, Issue — 04, April 2018, PP — 92-98

Implementation of Layer 2 Rules using Software Defined
Networking

G Anagha’, Deepthi G S, Archithaa S Rao, Pooja K*, B Sudha?, Sunita Katre®

UG Student, Assistant Professor?, Research and Development Engineer?
Department of Telecommunication Engineering, Bangalore Institute of Technology, Bengaluru, India*?
TATA Power Strategic Engineering Division, Bengaluru, India®

—
| Abstract: Software Defined Networking (SDN)is required for integrating and converging networks and for

Il bringing in flexibility to networks and to reach the objective of vendor independent networking. By effecting the |
Il traffic patterns, improving scalability and achieving vendor independence, a controlled network is developed.

Il Here we work on a network consisting of virtual hosts, switches, controller and links. This calls for the need of a

Il network emulator and we employ Mininet for the same. Mininet runs on Linux platform. This idea when

I realizedon a PC, we require to run more than one operating system at a time. Virtual box(VB) allows a user to
|
|
|
|
|

run software written for one operating system(OS) on another without having to reboot. Here we make use of an

open source SDN controller, OpenDayLight Controller. This provides modular open platform for customizing

and automating networks of any size and scale. Postman is the http client which is employed here to push the

flows. The layer 2 rules which include flow rules for packet transfer are pushed upon desired network as a part

of designing.

Keywords: Software Defined Networking, Emulator, Network Topology, Layer 2 Rules, Port matching,
l| Packet capture

|

I. Introduction
In this section we briefly discuss the major softwares and applications used in the implementation of
the above-mentioned idea. This gives the brief note onSoftware Defined Networking(SDN), Mininet,
VirtualBox(VB).

A. Software Defined Networking (SDN)

SDN is an approach to using Open protocols like OpenFlow. This makes use of software control for
operation of network and control the network elements such as switches and routers. This kind of networking is
a novel approach to cloud computing that facilitates network management and enables programmatically
efficient network configuration in order to improve network performance and monitoring [1]. There is a
provision for centralization of network intelligence where packet forwarding and packet routing are not
associated to one another according to functional idea of SDN. SDN architectures decouple network control and
forwarding functions enabling network control to become directly programmable and the underlying
infrastructure to be abstracted from applications and network services [2].

Functional elements in SDN:
The components involved in a network controlled by the method of SDN are described below

i SDN Application: SDN Applications are a set of suitable codes that operates directly and
independently on the network elements for exchange of information regarding network requirements.

ii. SDN Controller: The SDN Controller is a programmatically controlled functional element that
translates information from SDN Application layer to SDN data paths. It also gives a summary of view
of network to SDN Applications.

iii. SDN Datapath:The SDN Datapath is a logical network element that displays and monitors data
forwarding and data processing ability. The representation may consist of all resources or a selected
group of resources.

iv. SDN Control to Data-Plane Interface (CDPI): The SDN CDPI is the linking element between SDN
Controller and SDN Datapath and uses program to control data forwarding end event alerting process.

v. SDN Northbound Interfaces (NBI):A northbound interface of a component is an interface that
conceptualizes the lower level details. SDN NBIs are interfaces between SDN Applications and SDN
Controllers

www.ijlera.com 2018 IJLERA — All Right Reserved 92 | Page

International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 2455-7137

Volume — 03, Issue — 04, April 2018, PP — 92-98

B. Mininet

Mininet is a network emulator. It runs on a collection of end-hosts, switches, routers, and links on a
single Linux kernel. In a virtual way one can programmatically make a single systemto resemble the entire
communication network, that runs on a common kernel, system and user code by using Mininet. A Mininet host
behaves just like a real machine and the user can secure shell (ssh) into it. The programs run on Mininet can
send packets over virtual ethernet switch or router with the given amount of queueing. In other words, Mininet’s
network elements are created using software rather than hardware while they behave similar to discrete
hardware elements. The user can create and run Mininet topologies both simple and complex by writing Python
Scripts [3].

C. OpenDaylight Controller (ODL)

Communication providers can adapt their networks to be more flexible to their needs. At the same
time, they required driving network automation to improve operational efficiency. ODL is the largest Open
source SDN controller used for this purpose. ODL is the platform that can be used to automate networks with all
possible topologies. This focuses on programming ability of a network. ODL Controller controls the network
and is a pure software hosted by Linux foundation. It is a pure Java virtual machine (JVM) and can be run on
any OS as long as it supports Java [4].

D. Virtual Box (VB)

VB allows a user to run software written for one OS on another without having to reboot. It may be
installed on a number of host OS including: Linux, Mac, Windows Solaris and Open Solaris. Here we run
Mininet and ODL on VB.

1. Creation of Topology Through Mininet
This section describes the methodology to create a topology involving various network elements in
mininet following the process of installation of Mininet onto VB.
Import .ovf file of Mininet into VB. The Mininet runs when the VB is set to run in the Host-only
network configuration mode [5]. Check the connectivity between root and Mininet with ping command as
shown in Figure2.1. Consider the exemplar topology in the Figure2.2 whose elements are described in Table2.1.

1y 4) 9:41PM 2%

) sysadmin@sysadmin-OptiPlex-390: ~
sysadmin@sysadmin-optiPlex-390:~$
sysadmin@sysadmin-OptiPlex-390
sysadmin@sysadmin-OptiPlex-350
sysadmin@sysadmin-OptiPlex-3590
sysadmin@sysadmin-optiPlex-390
sysadmin@sysadmin-OptiPlex- ping 192.168.56.101
PING 192.168.56.101 (192.168.56.101) 56(84) es of data.
64 bytes from 192.168.56 : icmp_seq=1 time=0.331 ms
64 bytes from 192. 6. ¢ icmp_seq=2 time=0.287 ms
64 bytes from 192.168.56.181: icmp_seq=3
64 bytes from a .56. : ilcmp_seq=4
64 bytes from .56. : icmp_seq=5
64 bytes from o 6. gl . =6
64 bytes from . 6.101: i q
64 bytes from a .56. : icmp_seq=8
64 bytes from o .56. : icmp_seq=9
64 bytes from .56. ¢ icmp_seq=10
64 bytes from 6.101: icmp_seq=11
64 bytes from 6. gl s

q
64 bytes from 6. : ilcmp_seq=13

64 bytes from .56. ¢ icmp_seq=14

64 bytes from .56.181: icmp_seq=15

64 bytes from 6. gl _seq=16

64 bytes from 6.

64 bytes from

64 bytes from _

64 bytes from .56. gl _S ms
64 bytes from 6. gl L i ms
64 bytes from 6. gl . i ms
64 bytes from 6.181: icmp_ i ms
64 bytes from .56.] s ms
64 bytes from .56.] S ms
64 bytes from 6. gl . ms
64 bytes from 6.101: icmp_ i 45 ms
64 bytes from 6. i 8 ms
64 bytes from 192. .56. : icmp_seq=29 ms
64 bytes from 192.168.56.101: icmp_seq=30 64 . ms

- 192.168.56.101 ping statistics ---

packets transmitted, 30 received, 0% packet loss, time 28993ms
rtt min/avg/max/mdev = ©.259/0.313/0.345/0.031 ms
sysadmin@sysadmin-OptiPlex-396:~%

Figure 2.1. Connecting PC and Mininet

www.ijlera.com 2018 IJLERA — All Right Reserved 93 | Page

International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 2455-7137

Volume — 03, Issue — 04, April 2018, PP — 92-98

192.168.56.1 192.168.57.1

192.168.56.3 192.168.57.3

Figure 2.2. Exemplar Topology

Table 2.1. Table describing the Network elements in the exemplar topology

Network elements Number
Host 4
Switch 2
Router 1
Controller 1

We write a Python script based on the following flowchart shown in Figure 2.3.

‘ Defining a class creating a Mode(Router) |

'

‘ Enabling Forwarding on router |

.

Create switches and links between switches
and router through respective IP addresses

!

Define 4 hosts and assign IP's for each host
and create subnet

I

Start the topology

Ping the hosts with each other to check
network connectivity.

stop

Figure. 2.3. Flowchart to realize the exemplar Topology

www.ijlera.com 2018 IJLERA — All Right Reserved 94 | Page

International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 2455-7137

Volume — 03, Issue — 04, April 2018, PP — 92-98

1. ODL: Linking the Remote Controller with Mininet
ODL can be accessed from web to keep the account of packet transfer, it is used primarily as Graphical
User Interface(GUI) to view the topology created. It shows nodes, IP addresses of hosts and several possible
arrangements of network elements. Port 8181 is used for web interface, and it is accessed through browser by
entering the following Universal Resource Locator(URL)
http://<ODL _1P>:8181/index.html

The web page to be loaded asks for user name and password to Login where both are pre-defined to be
“admin”.

The Topology section visualizes network topology. It creates visual graph of the network, showing all
the managed switches and routers and how they are connected together. Figure 3.1. is the view of the considered
exemplar topology in ODL web. The figure shows two switches and four hosts. The Router acts as a node

defined to serve both the subnets. Hence, it is depicted as a part of both the subnets.
OpenDaylight Opern X | $i§ Create flow to X @ whati X

D 192.168.56.103:818

S, Topology

Reload

host: 00: 00:00:00:00:01

host: 00:00: 00: 00: 00: 03

host:00:00: 00:00: 00: 04

Figure 3.1. View of the Topology in ODL web

IVV. Working with Postman
Postman is a Rest client and HTTP request composer. It provides web services and supports multiple
requests. The implementation considered in this paper deals with Layer 2 rules associated to Matching of the
hardware ethernet ports of mininet and ODL. The following are the steps to push the flow:

* Enter required headers in the “headers” space.

Content-Type: application/xml
Accept: application/xml
Authentication

* Type the xml code for matching of ethernet ports and required hosts in the “body” space. This requires
entering the hardware ethernet addresses of Mininet and ODL in the respective slots of the XML code
with ODL as destination and Mininet as source.

* Select “put” if the user wishes to push the flow on the topology.

« If you wish to verify with the pushed flow, you can view it by selecting “get” option.

* Enter the url and click on “send”.
http://<controller_ip>:8181/restconf/config/opendaylight/inventory:nodes/node/openflow: 1/table/<tab
le_number>/flow/<flow_number>

* With an error free code, the flow push success is indicated by 7200 OK” or “201 created” .

The Figure 4.1. is the XML code for matching the ethernet ports and establishing the connection and
transferring the packets between the desired hosts.

www.ijlera.com 2018 IJLERA — All Right Reserved 95 | Page

International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 2455-7137

Volume — 03, Issue — 04, April 2018, PP — 92-98

NEW I]:l Runner Import D Builder Gga v O 8§ O
0 Chrome apps are being deprecated. Download our free native apps For continued support and better performance, Leam mare X
No Environment

http://192.16856.103 @

Collections
e — pUT hrep://192.168.36.103:8181/restconffconfig/opendaylight-inventory:nodes/node/apenflow: 1 /tab... Params Save

Al

form-data xwww-form-urlencoded raw binary XML (application/xml)
Mine e — -

1 <l version="1.8" encoding="UTF-8" standalone="no"?>
0 requests 2+ «flow wnlns="urn:opendaylight: flow:inventory™s

i astrictsfalses/stricts

4= <instructionss

§v <instructions

§ <ordersfeorders

- <apply-actionss

iv <ctions

9 <ordersBe/order>
;] <gec-mpls-ttlf>
1 <factions

2 </apply-actions>

] <[instruction=

4 <[instructionss

<table_id+8</table_id>
§ Alslefigs
<cookle_mask»255¢/cookie_masks

B catche

9~ <ethernet-matchs

0~ <ethernet-types

1 <types 34887« types

2 <Jethernet-types

Iv <gthernet-destinations

1 <addresssB8:00:27:d1:83: The /address>
<Jethernet-destinations

fiv <ethernet-sources

<a00ress»08:08;27:9c: 18:63¢ /address»

bl <[ethernet -sources

1 <[ethernet-matchs

0 <ipvd-source>192, 168, 20,2/ 24k [ipvd-source>

i <lpvd-destinations192. 168,281, 3f24¢/ipvd-destinations

R <ln-portsBe/in-ports

k] <[matchs

H <hard-timeout=12</hard-tineouts

B <cookies5e/cookies

3 <ldle-tineout>3de/idle- tineouts

b <flow-nanesFookfSe flow-nanes

bl <prioritys2¢/priority>

1 <barriersfalses barriers

IR e lFlous

Shahie 200K Time: 103 me

Fﬂi“gure 4.1. Executed XML Code for Matching the Ethernet Ports

V. Simulation Results
In this section, we analyse the success of the flow rule pushed and view the packet capture using
Wireshark.

A. Test the success of flow pushed:
We use the command: $ shovs-ofctl —-O OpenFlow10 dump-flows slFigure 5.1 shows the output

describing the successof the flow rule pushed.

www.ijlera.com 2018 IJLERA — All Right Reserved 96 | Page

International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 2455-7137

Volume — 03, Issue — 04, April 2018, PP — 92-98

*** adding switches:
s1 s2
*** adding links:
(h1, s1) (h2, s1) (h3, s2) (h4, s2) (s1, re) (s2, ro)
*** Configuring hosts
hi h2 h3 h4 re
*** Starting controller
co
*** starting 2 switches
s1 52 ...
*** Starting CLI:
pingall
: testing ping reachability
h3 ha
h3 h4
h2 ha
LE}
h3
: 0% dropped (20/20 received)
mininet> sh ovs-ofctl -0 OpenFlowl® dump-flows si1
NXST_ FLOH reply (xid=0x4):
x2b000O00000OOAAY, duration=10.157s, table=@, n_packets=10, n_bytes=868, idle_age=8, priority=2,in_port=3 actions=output:1,output:2,C

duration=10.156s, table=0, n_packets=25, n_bytes=2282, idle_age=8, priority=2,in_port=1 actions=output:3,output:2,
duration=10.154s, table=8, n_packets=11, n_bytes=918, idle_age=8, priority=2,in_port=2 actions=output:3,output:1,C
44h00000000000004, duration=14.149s, table=0, n_packets=0, n_bytes=08, idle_age=14, priority=100,dl_type=6x88cc actions=CONTROLLER:655

x2ab0pneAne00000e , i .927s, table=0, n_packets=8, n_bytes=728, idle_timeout=600, hard_timeout=360, idle_age=3, priority=16,dl

00:00:00:00:01,d1_dst=00:00:00:00

44300000000000014, duratiol k | 2, idle_timeout=600, hard_timeout=366, idle_age=3, priority=10,d1_
:00:00:01,dl_dst=00:00:0! 00 00 a5 a<tlun<. DUtpUt 1

K450000000000000f duratiol .927s, table=0, n_packets=8, n_bytes=672, idle_timeout=600, hard_timeout=300, idle_age=3, priority=10,dl

(5] 00:00:00:02,dlid5t=00:00 00:00:00:01 action

x2a00060000000017, duration=8.828s, n_bytes=42, idle_timeout=600, hard_timeout=368, idle_age=3, priority=16,d1_

44500000000000010, duratlon .829s , n_bytes=42, idle_timeout=600, hard_timeout=360, idle_age=3, priority=10,d1_
:00:00:02,dl_dst=00:00:00:00:00:05 a<tlun<. DUtpUt 1

X2a00000000000013, duratiol .838s, table=8, n_packet: n_bytes=42, idle_timeout=600, hard_timeout=300, idle_age=3, priority=10,dl_
0:00:00:05,dL_ d5t=66:00:00:00:00:61 actions=output:2

x2b06OEOAOOOOEAZ, duratiol 129s, table=@, n_packets=8, n_bytes=0, idle age=14, priority=0 actions=drop

Figure 5.1.Verifying the Pushed Flow

B. Verifying the packet capture:
While pinging two different hosts of the exemplar network, we can verify the connection establishment
by using Wireshark which performs packet capture. This is illustrated in the Figure 5.2

Capturing from enp2s0
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

gl
Ha® X @] ¥ = RYYE
[WTApp ay filter ... <Ctrl-/> ~] Expression... = +
No. Time Source Destination Protocol Lengtt Info =
1 0.000000000 192.168.56.3 a .56.2 1 1d=0x07ad, s
— 2 0.000046580 192.168.56.2 192.168.56.3 IcMp 98 Echo (ping) reply id-8x07ad4, seq=35/8966, ttl
3 1.024584735 192.168.56.3 192.168.56.2 ICHP 98 Echo (ping) request id=0x07ad, seq=36/9216, ttl=6.
4 1.024630469 192.168.56.2 192.168.56.3 ICcHP 98 Echo (ping) reply id=0x87a4, seq=36/9216, ttl
5 2.048827981 192.168.56.3 192.168.56.2 IcMp 98 Echo (ping) request 1d-@x@7ad, seq=37/9472, ttl
6 2.049063353 192.168.56.2 192.168.56.3 ICHP 98 Echo (ping) reply 1d=0x07a4, seq=37/9472, ttl=6.
7 3.073459334 HewlettP 53:73:8d HewlettP b3:8c:3a ARP 68 Who has 192.168.56.27 Tell 192.168.56.3
8 3.8734808845 HewlettP _b3:8c:3a HewlettP 53:73:8d ARP 42 192.168.56.2 is at 48:0f:cf:b3:8c:3a
9 3.0973524908 192.168.56.3 192.168.56.2 ICHP 98 Echo (ping) request id=0x07a4, seq=38/9728, ttl=6.
10 3.973557279 192.168.56.2 192.168.56.3 ICHP 98 Echo (ping) reply id=gx@7ad4, seq=38/9728, ttl
11 4.8979808280 192.168.56.3 192.168.56.2 ICHMP 98 Echo (ping) request 1id=Ex@7a4, seq=39/9984, ttl
12 4.998015991 192.168.56.2 192.168.56.3 IcMp 98 Echo (ping) reply id=0x07ad4, seq=39/9984, ttl
13 5.122511090 192.168.56.3 192.168.56.2 ICHP 98 Echo (ping) request id=0x87ad, seq=40/18248, tt b

Frame 1: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface 0

Ethernet II, Src: HewlettP_53:T3:8d (ec:8e:b5:53:f3:8d), Dst: HewlettP_b3:B8c:3a (48:8f:cf:b3:8c:3a)
Internet Protocol Version 4, Src: 192.168.56.3, Dst: 192.168.56.2

Internet Control Message Protocol

vyvrwy

48 8f cf b3 8c 3a ec Be b5 53 3 8d @8 00 45 @0
B0 54 30 3a 40 B0 40 01 19 19 cO a8 38 83 cO a8
38 82 @8 00 6e 6F @7 ad ©0 23 38 da o1 5a 00 80
00 80 9f cl 69 00 G0 00 90 8O 10 11 12 13 14 15
16 17 18 19 1a 1b 1c 1d le 1f 20 21 22 23 24 25 ..., oo DUEEh
26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,- ./012345
36 37 67

@ 7 enp2s0: <live capture in progress=> Packets: 64 - Displayed: 64 (100.0%) = Profile: Default

Figure 5.2 Packet Capture in Wireshark

V1. Conclusion and Future Work
The paper talks about exploiting the advantages offered by software defined networking. It makes use
of network emulator mininet and a remote controller ODL to control entire network and manage topologies of
various size and scale. Further, the aforementioned applications are matched using postman. The success of
matching and the packet capture are verified with the aid of Wireshark.

www.ijlera.com 2018 IJLERA — All Right Reserved 97 | Page

International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 2455-7137

Volume — 03, Issue — 04, April 2018, PP — 92-98

This paper provides provision for the future work. There is enough scope for hardware realization.
SDN employs control console to enable network manager to operate and modify working of network elements
by allowing unconditional control of rues fed into the elements. SDN allows for entire control of network to
allow quick response to change in network or business needs. It is possible to create a mininet network that
resembles hardware network, or a hardware network that resembles a mininet network and to run the same
binary code and application on either platform, thus enabling the realization of a programmable network and
easy handling of network operation in real time [3].

References
[1]. Benzekkikamal et al.Software-defined networking (SDN): a survey.Security and Communication
Networks 9, no. 18 (2016)
[2]. “Software-defined networking (SDN) Definition”, Opennetworking.org. Retrieved 26, October 2014
[3]. Mininet, “Mininet version 2.2.1. http://mininet.org/overview/,” 2.2.1 ed. 2015
[4]. OpenDaylight, Nitrogen release, “https://github.com/opendaylight/controller/releases”
[5]. VirtualBox specific Instructions “https://github.com/mininet/openflow-tutorial/wiki/VirtualBox-
specific-Instructions”.

www.ijlera.com 2018 IJLERA — All Right Reserved 98 | Page

http://mininet.org/overview/
https://github.com/opendaylight/controller/releases
https://github.com/mininet/openflow-tutorial/wiki/VirtualBox-specific-Instructions
https://github.com/mininet/openflow-tutorial/wiki/VirtualBox-specific-Instructions

