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Introduction: 

The factorial is a quantity defined for all integers greater than or equal to zero.Factorials in addition to 

binomial coefficients are normally defined in a rather narrow structure. So-called Pascal‟s Triangle with the 

study of factorials has always been a focus of need so referring the reader to [5] for more information. 

Furthermore, a sequenceis an enumerated collection of objects in which repetitions are allowed and order does 

matter and the sum of the sequence to a certain number of terms is known as series.Some special types of series 

are Harmonic series, Arithmetic series, Geometric series, Alternating series etc. This paper develops a new 

generalized expression involving positive s well as negative integers, comprised of   alternating series and 

binomial coefficients, that leads to simple factorial of a number.  

 

Here are some basic concepts related to the topic. 

 
Preliminary Results: 

Definition 1: [5] 

Let X be a nonempty set, then a function f:N→ X  whose domain is a set of natural numbers, is called an infinite 

sequence in X. If the domain of f is the finite set of numbers{1, 2,3,…,n} then it is called a finite sequence in X.  

 

Definition 2: [3] 

Mathematical notation uses a symbol that compactly represents summation of many similar terms: the 

summation symbol, Ʃ, an enlarged form of the upright capital Greek letter Sigma. 

This is defined as: 

 𝑎𝑖 = 𝑎𝑚 + 𝑎𝑚+1 + 𝑎𝑚+2+. . . . . . +𝑎𝑛−1 + 𝑎𝑛

𝑛

𝑖=𝑚

 

where i represents the index of summation; 𝑎𝑖  is an indexed variable representing each successive term in the 

series; m is the lower bound of summation, and n is the upper bound of summation. 

 

Definition 3: [4] 

“A combination is any selection of objects where the order of the objects is immaterial (of no concern). 

Using the letter C for combination, we have “the number of combinations of “r” objects from “n” different 

objects as 
n

rC .  

In general, to permute “r” objects from n different objects, we could first select the “r” objects in
n

rC   ways and 

then arrange these „r‟ objects in r! ways. 

Hence: 
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 where n= the total number of elements in a set  

r= the number of selected objects != factorial 

 

Definition 4: [4] 

Expressions such as (x+y), (1-x) and (a+b) which contain two terms each are binomial expressions with unit 

power. 

Draw the following rules concerning the expansions of (1 + b)𝑛 . 
a) There are (n+1) terms. 

b) The power of „b‟ starts with 0 and increases to „n‟, i.e its powers are in ascending order. 

A more direct way to get any binomial coefficient is to use the
n

rC  notation 

when n=4, there are 5 terms: 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 

their coefficients are:              1 4 6 4 1 

using the
n

rC  notation,  
4

0C  
4

1C  
4

2C  
4

3C  
4

4C  

Pascal‟s triangle is a triangle where there is a row of 1‟s down each side. Each number inside the triangle 

number comes from adding together the two numbers above it. [2] 

using this notation, the Pascal‟s triangle becomes: 

 

 

   
 

1

0C

  

1

1C

     

   

2

0C

  

2

1C

  

2

2C

    

  

3

0C

  

3

1C

  

3

2C

  

3

3C

   

 

4

0C

  

4

1C

  

4

2C

  

4

3C

  

4

4C

  

5

0C

  

5

1C

  

5

2C

  

5

3C

  

5

4C

  

5

5C

 

 

Thus, the coefficient of the 3
rd

 and the 5
th

 terms in the expansion of (1 + 𝑏)5 are
5

2C  and
5

4C  respectively. 

“ In the expansion of (1 + 𝑏)𝑛 , the coefficient of
1

n

r rT C  . Hence the binomial expansion of (1 + 𝑏)𝑛 , where 

𝑛 ∈ 𝑍+, is given by  

  1 2 3

1 2 31 1
n n n n n r n

rb C b C b C b C b b           

This result is known as binomial theorem. 

 

Lemma 1:-[1] 

   
0

1  0

in
jj n

x i

i

T C x i


      0,1,2,3, , 1j n    (1.1)  

 

Lemma 2:-[1] 

 0

0

1  0

in
n

n i

i

T C


  
  0n   

Theorem:- 

An alternating series consisting of (n+1) terms yields n factorial, if the terms are the product of Pascal‟s 

coefficients of any power n with the corresponding (n+1) consecutive decreasing numbers exponentiated with n. 
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   
0

1  !

in
nn n

x i

i

T C x i n


      ∀ 𝑥 < 𝑛, n N , x N  

Proof:-Using mathematical induction 

 

For x n
 

   
0

1  

in
nn n

n i

i

T C n i


         (1.2) 

   
1

11

0

1  1 1

in
nn n

n i

i

T n C n i






       

   
1 1

11 1

0 0

1  1

in n
n ln n n

n i l

i l

T n C C n i
 

  

 

       

   

     

1
11 1

0

0

1 1 1

1 2 1

1  1

0 0 0

in
nn n

in
in

n n n

n

C C n i
T n

C C C


 



  



 
    

  
    



  

by Lemma 1     

   
1

11

0

 1  1

in
nn n

n i

i

T n C n i






      

     
2

22

0

1 1  2

in
nn n

n i

i

T n n C n i






        

and so on generalizing 

         
1

11

0

1 2 3 2 1  1

i

n

n i

i

T n n n n C i


        

!n

nT n   

For 1x n    
  

 
   

 
1

1

0

! 1
1  1

! ! 1

in
nn

n

i

n
T n i

i n i n i







   
  

  

  

   
11

1

0

1
1  1

1

in
nn n

n i

i

T C n i
n







   

   

  

   
1

11

1

0

1
1  1

1

in
nn n

n i

i

T C n i
n








   

   

 1

1
1 !

1

n

nT n
n

  


  

1 !n

nT n    

 

For 2x n    
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     1

2

0

1
1  2 1

1

in
nn n

n i

i

T C n i n i
n







     

   

 

     1

2

0

1
1  2 1

1

in
nn n

n i

i

T C n i n i
n







     

   

  

     
1

1

2

0

1
1  2 2 1

1

in
nn n

n i

i

T C n i n i
n








      

   

  

   
1

11

2

0

1
1  2 0

1

in
nn n

n i

i

T C n i
n








  
     

   
   

   

Put 1n m   within summation in the expression 

   2

0

1
1  1

1

im
mn m

n i

i

T C m i
n





  
    

   
   

   

2

1
!

1

n

nT m
n

 


  

 

 2

1
1 !

1

n

nT n
n

  


  

2 !n

nT n    

Suppose equation holds for x n k  .   

 

   

Now for 1x n k    

   1

0

1  1

in
nn n

n k i

i

T C n k i 



        

 

     
1

1

1

0

1
1  1 1

1

in
nn n

n k i

i

T C n k i n i
n




 



      

    

     
1

1

1

0

1
1  1 1

1

in
nn n

n k i

i

T C n k i n k i k
n




 



        

    

   

   
1

11

1

0

1
1  1

1

in
nn n

n k i

i

T C n k i
n




 



    

    

Put 1n m   within summation in the expression   

1

1

1

n m

n k m kT T
n

  


  

1

1
!

1

n

n kT m
n

  


 as it holds for k   



International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 2455-7137  

 

Volume –05, Issue – 02, February 2020, PP – 09-13 

www.ijlera.com                                  2020 IJLERA – All Right Reserved                               13 | Page 

 1

1
1 !

1

n

n kT n
n

   


 back substitution  

1 !n

n kT n     

  

Hence, completes the induction. 

 

Conclusion: 
This can be applicable to a number of theory problems. There is much more to be discovered by moving this 

work forward. 
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