Secure Inverse Domination in the Join of Graphs

Jesica P. Dagodog ${ }^{1}$, Enrico L. Enriquez ${ }^{2}$
${ }^{1,2}$ Departmentof Computer, Information Science and Mathematics School of Arts and Science
University of San Carlos, 6000 Cebu City, Philippines

Abstract

Let G be a connected simple graph and let D be a minimum dominating set of G . A dominating set $S \subseteq V(G) \backslash D$ is an inverse dominating set of G with respect to D. The set S is called a secure inverse dominating set of G if for every $u \in V(G) \backslash S$, there exists $v \in S$ such that $u v \in E(G)$ and the set $(S \backslash\{v\}) \cup\{u\}$ is a dominating set of G. The secure inverse domination number of G, denoted by $\gamma_{s}^{(-1)}(G)$, is the minimum cardinality of a secure inverse dominating set of G. A secure inverse dominating set of cardinality $\gamma_{s}^{(-1)}(G)$ is called $\gamma_{s}^{(-1)}-$ set. In this paper, the researchers initiate a study of the concept of secure inverse domination in graphs and characterize the secure inverse dominating set in the join of two connected simple graphs.

Keywords: dominating sets, inverse dominating sets, join of two graphs, secure dominating sets, secure inverse dominating sets

I. INTRODUCTION

In [1], Claude Berge and Oystein Ore introduced the domination in graphs. Through the work of Cockayne and Hedetniemi in [2], domination in graphs became an area of study by many researchers [3, 4, 5, 6, 7, 8]. Secure domination in graphs was studied and introduced by E.J. Cockayne et.al [9, 10]. In [11] Enriquez and Canoy, introduced a variant of domination in graphs, the concept of secure convex domination in graphs. Some studies on secure domination in graphs were found in the papers [12, 13, 14, 15, 16, 17]. The inverse domination in graph was first found in the paper of Kulli [18] and can be read in [19, 20, 21, 22, 23, 24, 25]. In this paper, the researchers characterize the secure inverse dominating sets in the joinof two graphs and give some important results. For the general concepts, the reader may refer to [26].

Let $G=(V(G), E(G))$ be a connected simple graph and $v \in V(G)$. The neighborhood of v is the set $N_{G}(v)=N(v)=\{u \in V(G): u v \in E(G)\}$. If $S \subseteq V(G)$, then the open neighborhood of S is the set $N_{G}(S)=$ $N(S)=\bigcup_{v \in S} N_{G}(v)$. The closed neighborhood of S is $N_{G}[S]=N[S]=S \cup N(S)$. A subset S of $V(G)$ is a dominatingset of G if for every $v \in(V(G) \backslash S)$, there exists $x \in S$ such that $x v \in E(G)$, i.e., $N[S]=V(G)$. The domination numbery (G) of G is the smallest cardinality of a dominating set of G.

A dominating set S in G is called a secure dominating set in G if for every $u \in V(G) \backslash S$, there exists $v \in S \cap N_{G}(u)$ such that $(S \backslash\{v\}) \cup\{u\}$ is a dominating set. The minimum cardinality of secure dominating set is called the secure domination number of G and is denoted by $\gamma_{s}(G)$. A secure dominating set of cardinality $\gamma_{s}(G)$ is called $\gamma_{s}-$ set of G.

Let D be a minimum dominating set in G. The dominating set $S \subseteq V(G) \backslash D$ is called an inverse dominating set with respect to D. The minimum cardinality of inverse dominating set is called an inverse domination number of G and is denoted by $\gamma^{-1}(G)$. An inverse dominating set of cardinality $\gamma^{-1}(G)$ is called $\gamma^{-1}-$ set of G. Motivated by the definition of secure and inverse domination in graphs, the researchers define a new domination parameter.

Let G be a connected simple graph and let D be a minimum dominating set in G. Then a dominating set $S \subseteq V(G) \backslash D$ is an inverse dominating set in G with respect to D. The set S is called a secure inverse dominating set in G if for every $u \in V(G) \backslash S$, there exists $v \in S$ such that $u v \in E(G)$ and the set $(S \backslash\{v\}) \cup\{u\}$ is a dominating set in G. The secure inverse domination number of G, denoted by $\gamma_{s}^{-1}(G)$, is the minimum cardinality of a secure inverse dominating set of G. A secure inverse dominating set of cardinality $\gamma_{s}^{-1}(G)$ is called $\gamma_{s}^{-1}-$ set. In this paper, the study of secure inverse domination in graphs is initiated and some important results are given.

II. RESULTS

Remark 2.1 Let D be a minimum dominating set of G. Then $V(G) \backslash D$ is a secure dominating set of G, that is, $V(G) \backslash D$ is a secure inverse dominating set of G.

Volume - 09, Issue - 01, January 2024, PP - 105-112

Abstract

In Remark 2.1, $V(G) \backslash D$ can be an inverse secure dominating set of G if D is a secure dominating set of G. Hence, every inverse secure dominating set is a secure inverse dominating set, however, the converse is not always true. For example, in $P_{5}=\left[x_{1}, x_{2}, \ldots, x_{5}\right]$, the set $D=\left\{x_{1}, x_{4}\right\}$ is a minimum dominating set of P_{5} and $S=V\left(P_{5}\right) \backslash D=\left\{x_{2}, x_{3}, x_{5}\right\}$ is an inverse dominating set with respect to D. Since S is a secure dominating set, it follows that S is a secure inverse dominating set of P_{5}. However, it is not an inverse secure dominating set of G because D is not a secure dominating set of G. The following definitions are needed for the subsequent results.

Definition 2.2 A nonempty subset S of $V(G)$, where G is any graph, is a clique in G if the graph $\langle S\rangle$ induced by S is complete.
Definition 2.3 The join of two graphs G and H is the graph $G+H$ with vertex-set $V(G+H)=V(G) \cup V(H)$ and edge-set $E(G+H)=E(G) \cup E(H) \cup\{u v: u \in V(G), v \in V(H)\}$.
Remark 2.4 If $\gamma(G)=1$ or $\gamma(H)=1$, then $\gamma(G+H)=1$, otherwise, $\gamma(G+H)=2$.
Lemma 2.5 Let G be connected non-complete graphs. If D is a minimum dominating set of G with $|D| \leq 2$ and S is an inverse dominating set of G with respect to D, then a subset $S \subseteq V(G+H) \backslash D$ is a secure inverse dominating set of $G+H$.
Proof: Suppose that D is a minimum dominating set of G with $|D| \leq 2$ and S is an inverse dominating set of G with respect to D. Then $S \subseteq V(G+H) \backslash D$ is an inverse dominating set of $G+H$ with respect to D. Clearly, if $S=V(G+H) \backslash D$, then S is a secure inverse dominating set of $G+H$ with respect to D. Now, let $S \subset$ $V(G+H) \backslash D$ and consider the following cases.
Case 1. If $S=V(G) \backslash D$, then let $u \in V(G) \backslash S=D \subset V(G+H) \backslash S$. There exists $v \in S$ such that $u v \in E(G+$ $H)$ and $(S \backslash\{v\}) \cup\{u\}$.
Subcase 1. If $D=\{u\}$, then $(S \backslash\{v\}) \cup\{u\}$ is a dominating set of $G+H$. Hence, S is a secure dominating set of $G+H$.
Subcase 2. If $D=\left\{u^{\prime}, u^{\prime \prime}\right\}$, then $(S \backslash\{v\}) \cup\{u\}$ is a dominating set of $G+H$ for all $u \in D$. Hence, S is a secure dominating set of $G+H$.

In either case, S is a secure dominating set of $G+H$. Accordingly, S is a secure inverse dominating set of $G+H$.
Case 2. If $S \neq V(G) \backslash D, S \subset V(G) \backslash D$. Note that S is an inverse dominating set of $G+H$. Thus, for all $u \in V(G) \backslash S \subset V(G+H) \backslash S$, there exists $v \in S$ such thatuv $\in E(G+H)$ and $(S \backslash\{v\}) \cup\{u\}$.
Subcase 1. If $D=\{u\}$, then $(S \backslash\{v\}) \cup\{u\}$ is a dominating set of $G+H$. Hence, S is a secure dominating set of $G+H$.
Subcase 2. If $D=\left\{u^{\prime}, u^{\prime \prime}\right\}$, then $(S \backslash\{v\}) \cup\{u\}$ is a dominating set of $G+H$ for all $u \in D$. Hence, S is a secure dominating set of $G+H$.

In either case, S is a secure dominating set of $G+H$. Accordingly, S is a secure inverse dominating set of $G+H$. \square
Lemma 2.6 Let G and H be connected non-complete graphs. If D is a minimum dominating set of G with $|D| \leq 2$ and $S=V(H)$ or S is a secure dominating set of H, then a subset $S \subseteq V(G+H) \backslash D$ is a secure inverse dominating set of $G+H$.
Proof: Suppose that D is a minimum dominating set of G with $|D| \leq 2$ and $S=V(H)$ or S is a secure dominating set of H.
Case 1. If $S=V(H)$, then S is an inverse dominating set of $G+H$ with respect to a minimum dominating set D of G and of $G+H$ is clear. Since for every $u \in V(G+H) \backslash S=V(G)$, there exists $v \in S$ such that $u v \in E(G+$ $H)$ and $(S \backslash\{v\}) \cup\{u\}$ is a dominating set of $G+H, S$ is a secure dominating set of $G+H$. Thus, S is a secure inverse dominating set of $G+H$.
Case 2. If S is a secure dominating set of H, then $S \subset V(H)$. Further, $S \subseteq V(G+H) \backslash D$ is an inverse dominating set of $G+H$ with respect to a minimum dominating set D of G and of $G+H$. Now, for every $u \in V(G+H) \backslash S=V(G) \cup(V(H) \backslash S)$, that is, $u \in V(G) \cup(V(H) \backslash S)$. If $u \in V(G)$, then there exists $v \in$ Ssuch that $u v \in E(G+H)$ and $(S \backslash\{v\}) \cup\{u\}$ is a dominatingset of $G+H$ (since H is a connected noncomplete graph, $|S| \geq 2$). Hence, S is a secure dominating set of $G+H$, that is, S is a secure inverse dominating set of $G+H$. If $u \in V(H) \backslash S$, then there exists $v \in S$ such that $u v \in E(H) \subset E(G+H)$ (since S is a dominating set of H) and $(S \backslash\{v\}) \cup\{u\}$ is a dominating set of H (since S is a secure dominating set of H) and of $G+H$. Hence, S is a secure inverse dominating set of $G+H$. \square
Lemma 2.7 Let G and H be connected non-complete graphs. If $D(|D| \leq 2)$ is a minimum dominating set of H and S is an inverse dominating set of H with respect to D, then a subset $S \subseteq V(G+H) \backslash D$, is a secure inverse dominating set of $G+H$.

International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 2455-7137
Volume - 09, Issue - 01, January 2024, PP - 105-112
Proof: Suppose that D is a minimum dominating set of G with $|D| \leq 2$ and S is an inverse dominating set of H with respect to D. Then $S \subseteq V(G+H) \backslash D$ is an inverse dominating set of $G+H$ with respect to D. Clearly, if $S=V(G+H) \backslash D$, then S is a secure inverse dominating set of $G+H$ with respect to D. Now, let $S \subset$ $V(G+H) \backslash D$ and consider the following cases.
Case 1. If $S=V(H) \backslash D$, then let $u \in V(H) \backslash S=D \subset V(G+H) \backslash S$. There exists $v \in S$ such that $u v \in E(G+$ $H)$ and $(S \backslash\{v\}) \cup\{u\}$.
Subcase 1. If $D=\{u\}$, then $(S \backslash\{v\}) \cup\{u\}$ is a dominating set of $G+H$. Hence, S is a secure dominating set of $G+H$.
Subcase 2. If $D=\left\{u^{\prime}, u^{\prime \prime}\right\}$ then $(S \backslash\{v\}) \cup\{u\}$ is a dominating set of $G+H$ for all $u \in D$. Hence, S is a secure dominating set of $G+H$.

In either case, S is a secure dominating set of $G+H$. Accordingly, S is a secure inverse dominating set of $G+H$.
Case 2. If $S \neq V(H) \backslash D$, then $S \subset V(H) \backslash D$. Note that S is an inverse dominating set of $G+H$. Thus, for all $u \in V(H) \backslash S \subset V(G+H) \backslash S$, there exists $v \in S$ such that $u v \in E(G+H)$ and $(S \backslash\{v\}) \cup\{u\}$.
Subcase 1. If $D=\{u\}$, then $(S \backslash\{v\}) \cup\{u\}$ is a dominating set of $G+H$. Hence, S is a secure dominating set of $G+H$.
Subcase 2. If $D=\left\{u^{\prime}, u^{\prime \prime}\right\}$ then $(S \backslash\{v\}) \cup\{u\}$ is a dominating set of $G+H$ for all $u \in D$. Hence, S is a secure dominating set of $G+H$.

In either case, S is a secure dominating set of $G+H$. Accordingly, S is a secure inverse dominating set of $G+H . \square$
Lemma 2.8 Let G and H be connected non-complete graphs. If $D(|D| \leq 2)$ is a minimum dominating set of H and $S=V(G)$ or Sis a secure dominating set of G, then a subset $S \subseteq V(G+H) \backslash D$ is a secure inverse dominating set of $G+H$.
Proof: Suppose that D is a minimum dominating set of G with $|D| \leq 2$ and $S=V(G)$ or S is a secure dominating set of G. Then $S \subseteq V(G)$.
Case 1. If $S=V(G)$, then S is an inverse dominating set of $G+H$ with respect to a minimum dominating set D of H and of $G+H$. Since for every $u \in V(G+H) \backslash S=V(H)$, there exists $v \in S$ such that $u v \in E(G+H)$ and $(S \backslash\{v\}) \cup\{u\}$ is a dominating set of $G+H$. Hence, S is a secure dominating set of $G+H$, that is, S is a secure inverse dominating set of $G+H$.
Case 2. If $S \neq V(G)$, then $S \subset V(G)$. Further, S is an inverse dominating set of $G+H$ with respect to a minimum dominating set D of H and of $G+H$. Now, for every $u \in V(G+H) \backslash S=V(H) \cup(V(G) \backslash S)$, $u \in V(H) \cup(V(G) \backslash S)$. If $u \in V(H)$, then there exists $v \in S$ such thatuv $\in E(G+H)$ and $(S \backslash\{v\}) \cup\{u\}$ is a dominating set of $G+H$ (since G is a connected non-complete graph, $|S| \geq 2$). Hence, S is a secure dominating set of $G+H$, that is, S is a secure inverse dominating set of $G+H$. If $u \in V(G) \backslash S$, then there exists $v \in S$ such that $u v \in E(G) \subset E(G+H)$ (since S is a dominating set of G) and $(S \backslash\{v\}) \cup\{u\}$ is a dominating set of G (since S is a secure dominating set of G) and of $G+H$. Hence, S is a secure inverse dominating set of $G+H . \square$
Lemma 2.9 Let Gand H be connected non-complete graphs. If $D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G), D_{H}=$ $\{w\} \subset V(H), \gamma(G) \neq 1, \gamma(H) \neq 1$, and $S=V(G) \backslash D_{G}$ or $S=V(H) \backslash D_{H}$, then a subset $S \subseteq V(G+H) \backslash D$, is a secure inverse dominating set of $G+H$.
Proof: Suppose that $D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G), D_{H}=\{w\} \subset V(H), \gamma(G) \neq 1$, and $\gamma(H) \neq 1$. Then $D=\{v, w\}$ is a minimum dominating set of $G+H$ and $S \subseteq V(G+H) \backslash D$ is an inverse dominating set of $G+H$ with respect to D.
Case 1. If $S=V(G) \backslash D_{G}$, then S is clearly a secure dominating set of G. Now, $V(G+H) \backslash S \neq \emptyset$, let $u \in$ $V(G+H) \backslash S$. If $u \in V(G) \backslash S$, then there exists $x \in S$ such that $u x \in E(G) \subset E(G+H)$ and $(S \backslash\{x\}) \cup\{u\}$ is a dominating set of G (since S is a secure dominating set of G) and of $G+H$. Hence, S is a secure dominating set of $G+H$, that is, S is a secure inverse dominating set of $G+H$. If $u \in V(H)$, then there exists $x \in S \subset V(G)$ such that $x u \in E(G+H)$ and $(S \backslash\{x\}) \cup\{u\}$ is a dominating set of $G+H$. Hence, S is a secure dominating set of $G+H$, that is,S is a secure inverse dominating set of $G+H$.
Case 2. If $S=V(H) \backslash D_{H}$, then S is clearly a secure dominating set of H and an inverse dominating set of $G+H$ with respect to D. Now, $V(G+H) \backslash S \neq \emptyset$, let $u \in V(G+H) \backslash S$. If $u \in V(H) \backslash S$, then there exists $x \in S$ such that $u x \in E(H) \subset E(G+H)$ and $(S \backslash\{x\}) \cup\{u\}$ is a dominating set of H (since S is a secure dominating set of H) and of $G+H$. Hence, S is a secure dominating set of $G+H$, that is, S is a secure inverse dominating set of $G+H$. If $u \in V(G)$, then there exists $x \in S \subset V(H)$ such that $x u \in E(G+H)$ and $(S \backslash\{x\}) \cup\{u\}$ is a dominating set of $G+H$. Hence, S is a secure dominating set of $G+H$, that is, S is a secure inverse dominating set of $G+H$. .

Volume - 09, Issue - 01, January 2024, PP - 105-112
Lemma 2.10 Let G and H be connected non-complete graphs. If $D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G), D_{H}=$ $\{w\} \subset V(H), \gamma(G) \neq 1, \gamma(H) \neq 1$, and $S \subset V(G) \backslash D_{G}$ is a secure dominating set of G or $S \subset V(H) \backslash D_{H}$ is a secure dominating set of H, then a subset $S \subseteq V(G+H) \backslash D$, is a secure inverse dominating set of $G+H$.
Proof: Suppose that $D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G), D_{H}=\{w\} \subset V(H), \gamma(G) \neq 1$, and $\gamma(H) \neq 1$. Then $D=\{v, w\}$ is a minimum dominating set of $G+H$ and $S \subseteq V(G+H) \backslash D$ is an inverse dominating set of $G+H$ with respect to D.
Case 1. IfS $\subset V(G) \backslash D_{G}$ is a secure dominating set of G, then for every $u \in\left(V(G) \backslash D_{G}\right) \backslash S$, there exists $x \in S$ such thatux $\in E(G)$ and $(S \backslash\{x\}) \cup\{u\}$ is a dominating set of G and of $G+H$. Thus, S is a secure inverse dominating set of $G+H$.
Case 2. If $S \subset V(H) \backslash D_{H}$ is a secure dominating set of H, then for every $u \in\left(V(H) \backslash D_{H}\right) \backslash S$, there exists $x \in S$ such that $u x \in E(H)$ and $(S \backslash\{x\}) \cup\{u\}$ is a dominating set of H and of $G+H$. Thus, S is a secure inverse dominating set of $G+H . \square$
Lemma 2.11 Let Gand H be connected non-complete graphs. If $D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G), D_{H}=$ $\{w\} \subset V(H)$ and either D_{G} or D_{H} is a dominating set, and $S=S_{G} \cup S_{H}$ where $S_{G} \subset V(G)$ and $S_{H} \subset V(H)$ and $S_{G}=\{z\}$ is a dominating set of Gand $S_{H}=\{x\}$ is a dominating set of H, then a subset $S \subseteq V(G+H) \backslash D$ is a secure inverse dominating set of $G+H$.
Proof: Suppose that $D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G)$ or $D_{H}=\{w\} \subset V(H)$ is a dominating set of G or H. Then D is a minimum dominating set of $G+H$. If $S=S_{G} \cup S_{H}$, where $S_{G}=\{z\} \subset V(G)$ and $S_{H}=\{x\} \subset$ $V(H)$ are dominating sets in G and H respectively, then $S=\{z, x\} \subset V(G+H) \backslash D$ is an inverse dominating set of $G+H$ with respect to a minimum dominating set D. Let $u \in V(G+H) \backslash S$. If $u \in V(G) \backslash S_{G}$, then $u z \in$ $E(G) \subset E(G+H)$ and $(S \backslash\{z\}) \cup\{u\}=\{x, u\}$ is a dominating set of $G+H$. Hence, S is a secure dominating set of $G+H$. If $u \in V(H) \backslash S_{H}$, then $u x \in E(H) \subset E(G+H)$ and $(S \backslash\{x\}) \cup\{u\}=\{z, u\}$ is a dominating set of $G+H$. Hence, S is a secure dominating set of $G+H$.ם
Lemma 2.12 Let Gand H be connected non-complete graphs. If $D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G), D_{H}=$ $\{w\} \subset V(H), S=S_{G} \cup S_{H}$ where $S_{G} \subseteq V(G) \backslash D_{G}$ and $S_{H} \subseteq V(H) \backslash D_{H}, \quad \gamma(G) \neq 1, \gamma(H) \neq 1, \quad S_{G}=\{z\}$ and $\left\langle\left(V(H) \backslash N_{H}\left[S_{H}\right]\right)\right\rangle$ is a clique in H, where $\left|S_{H}\right| \geq 2$, then a subset $S \subseteq V(G+H) \backslash D$ is a secure inverse dominating set of $G+H$.
Proof: Suppose that $D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G), D_{H}=\{w\} \subset V(H)$. If $\gamma(G) \neq 1$ and $\gamma(H) \neq 1$, then $D=\{v, w\}$ is a minimum dominating set of $G+H$. Since $S=S_{G} \cup S_{H}$ where $S_{G} \subseteq V(G) \backslash D_{G}$ and $S_{H} \subseteq V(H) \backslash$ D_{H}, it follows that $S \subseteq V(G+H) \backslash D$ is an inverse dominating set of $G+H$ with respect to D. Let $u \in$ $V(G+H) \backslash S$.

If $u \in V(G) \backslash S_{G}$ and $u \in N_{G}\left[S_{G}\right]=N_{G}[\{z\}]$, then $u z \in E(G) \subset E(G+H)$ and $(S \backslash\{z\}) \cup\{u\}=S_{H} \cup$ $\{u\}$ is a dominating set of $G+H$, that is, S is a secure dominating set of $G+H$.

If $u \in V(G) \backslash S_{G}$ and $u \notin N_{G}[\{z\}]$, then there exists $y \in S_{H}$ such that $u y \in E(G+H)$ and $(S \backslash\{y\}) \cup$ $\{u\}=\left(\{z\} \cup S_{H} \backslash\{y\}\right) \cup\{u\}$ is a dominating set of $G+H$ (since $\left|S_{H}\right| \geq 2$), that is, S is a secure dominating set of $G+H$.

If $u \in V(H) \backslash S_{H}$ and $u \in N_{H}\left[S_{H}\right]$, then there exists $y \in S_{H}$ such that $u y \in E(H) \subset E(G+H)$ and $(S \backslash\{y\}) \cup\{u\}=\left(S_{G} \cup S_{H} \backslash\{y\}\right) \cup\{u\}$ is a dominating set of $G+H$, that is, S is a secure dominating set of $G+H$.

If $u \in V(H) \backslash S_{H}$ and $u \notin N_{H}\left[S_{H}\right]$, then $u \in V(H) \backslash N_{H}\left[S_{H}\right]$. Further, $z u \in E(G+H)$ and $(S \backslash\{z\}) \cup$ $\{u\}=S_{H} \cup\{u\}$. Since $u \in V(H) \backslash N_{H}\left[S_{H}\right]$ and $\left\langle V(H) \backslash N_{H}\left[S_{H}\right]\right\rangle$ is a clique in H, it follows that $S_{H} \cup\{u\}$ is a dominating set of H and $G+H$, that is, S is a secure dominating set of $G+H$.

Accordingly, S is a secure inverse dominating set of $G+H . \square$
Lemma 2.13 Let Gand H be connected non-complete graphs. If $D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G), D_{H}=$ $\{w\} \subset V(H), \quad S=S_{G} \cup S_{H} \quad$ where $\quad S_{G} \subset V(G) \backslash D_{G}$ and $S_{H} \subset V(H) \backslash D_{H}, \quad \gamma(G) \neq 1, \gamma(H) \neq 1, \quad\langle(V(G) \backslash$ NGSG) is a clique in G, where $S G \geq 2$ and $S H=x$, then a subset $S \subseteq V G+H \backslash D$, is a secure inverse dominating set of $G+H$.
Proof: Suppose that $D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G), D_{H}=\{w\} \subset V(H), \gamma(G) \neq 1$, and $\gamma(H) \neq 1$, Then $D=\left\{v, w\right.$ \}is a minimum dominating set of $G+H$. Since $S=S_{G} \cup S_{H}$ where $S_{G} \subseteq V(G) \backslash D_{G}$ and $S_{H} \subseteq V(H) \backslash D_{H}$, it follows that $S \subseteq V(G+H) \backslash D$ is an inverse dominating set of $G+H$ with respect to D. Let $u \in V(G+H) \backslash S$.

If $u \in V(H) \backslash S_{H}$ and $u \in N_{H}\left[S_{H}\right]=N_{H}[\{x\}]$, then $u x \in E(H) \subset E(G+H)$ and $(S \backslash\{x\}) \subset\{u\}=S_{G} \cup$ $\{u\}$ is a dominating set of $G+H$, that is, S is a secure dominating set of $G+H$.

If $u \in V(H) \backslash S_{H}$ and $u \notin N_{H}[\{x\}]$, then there exists $y \in S_{G}$ such that $u y \in E(G+H)$ and $(S \backslash\{y\}) \cup$ $\{u\}=\left(\left(S_{G} \backslash\{y\}\right) \cup\{x\}\right) \cup\{u\}$ is a dominating set of $G+H$ (since $\left|S_{G}\right| \geq 2$), that is, S is a secure dominating set of $G+H$.

Volume - 09, Issue - 01, January 2024, PP - 105-112
If $u \in V(G)$ and $u \in N_{G}\left[S_{G}\right]$, then there exists $y \in S_{G}$ such that $u y \in E(G) \subset(G+H)$ and $(S \backslash\{y\}) \cup$ $\{u\}=\left(\left(S_{G} \backslash\{y\}\right) \cup\{x\}\right) \cup\{u\}$ is a dominating set of $G+H$, that is, S is a secure dominating set of $G+H$.

If $u \in v(G) \backslash S_{G}$ and $u \notin N_{G}\left[S_{G}\right]$, then $u \in V(G) \backslash N_{G}\left[S_{G}\right]$. Further, $u x \in E(G+H)$ and $(S \backslash\{x\}) \cup$ $\{u\}=S_{G} \cup\{u\}$. Since $u \in V(G) \backslash N_{G}\left[S_{G}\right]$ and $\left\langle V(G) \backslash N_{G}\left[S_{G}\right]\right\rangle$ is a clique in G, it follows that $S_{G} \cup\{u\}$ is a dominating set of G and $G+H$, that is, S is a secure dominating set of $G+H$.

Accordingly, S is a secure inverse dominating set of $G+H . \square$
Lemma 2.14 Let Gand H be connected non-complete graphs. If $D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G)$, $D_{H}=\{w\} \subset V(H), \gamma(G) \neq 1, \gamma(H) \neq 1, S_{G}=\{z\}$ and $\left\langle\left(V(G) \backslash N_{G}\left[S_{G}\right]\right)\right\rangle$ is a clique in G, and $S_{H}=\{x\}$ and $\left\langle\left(V(H) \backslash N_{H}\left[S_{H}\right]\right)\right\rangle$ is a clique in H, then a subset $S \subseteq V(G+H) \backslash D$, is a secure inverse dominating set of $G+H$.
Proof: Suppose that $D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G), D_{H}=\{w\} \subset V(H), \gamma(G) \neq 1$, and $\gamma(H) \neq 1$. Then $D=\{v, w\}$ is a minimum dominating set of $G+H$. If $S_{G}=\{z\}$ and $\left\langle\left(V(G) \backslash N_{G}\left[S_{G}\right]\right)\right\rangle$ is a clique in G, $S_{H}=\{x\}$ and $\left\langle\left(V(H) \backslash N_{H}\left[S_{H}\right]\right)\right\rangle$ is a clique in H, then $S=\{z, x\} \subset V(G+H) \backslash D$ is a dominating set of $G+H$, that is, $S \subset V(G+H) \backslash D$ is an inverse dominating set of $G+H$ with respect to D. Let $u \in V(G+H) \backslash$ S.
Case 1. If $u \in V(G) \backslash S_{G}$, then $u x \in E(G+H)$. If $u \in V(G) \backslash N_{G}\left[S_{G}\right]$, then $(S \backslash\{x\}) \cup\{u\}=\{z, u\} \subset V(G)$ is a dominating set of G since $\left\langle V(G) \backslash N_{G}\left[S_{G}\right]\right\rangle$ is a clique in G, that is, u dominates $\left\langle V(G) \backslash N_{G}\left[S_{G}\right]\right\rangle$ and z dominates $N_{G}\left[S_{G}\right]$. Thus, $(S \backslash\{x\}) \cup\{u\}=\{z, u\}$ is a dominating set of $G+H$. If $u \notin V(G) \backslash N_{G}\left[S_{G}\right]$, then $u \in N_{G}\left[S_{G}\right]$, that is, $(S \backslash\{z\}) \cup\{u\}=\{x, u\}$ is a dominating set of G and of $G+H$. Thus, S is a secure dominating set of $G+H$, that is, S is a secure inverse dominating set of $G+H$.
Case 2. If $u \in V(H) \backslash S_{H}$, then $u z \in E(G+H)$. If $u \in V(H) \backslash N_{H}\left[S_{H}\right]$, then $(S \backslash\{z\}) \cup\{u\}=\{x, u\}$ is a dominating set of H since $\left\langle V(H) \backslash N_{H}\left[S_{H}\right]\right\rangle$ and x dominates $N_{H}\left[S_{H}\right]$. Thus $(S \backslash\{z\}) \cup\{u\}=\{x, u\}$ is a dominating set of $G+H$. If $u \notin V(H) \backslash N_{H}\left[S_{H}\right]$, then $u \in N_{H}\left[S_{H}\right]$, that is, $(S \backslash\{x\}) \cup\{u\}=\{z, u\}$ is a dominating set of H and of $G+H$. Thus, S is a secure dominating set of $G+H$, that is, S is a secure inverse dominating set of $G+H$. \square
Lemma 2.15 Let Gand H be connected non-complete graphs. If $D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G), D_{H}=$ $\{w\} \subset V(H), S=S_{G} \cup S_{H}$ where $S_{G} \subseteq V(G) \backslash D_{G}$ and $S_{H} \subseteq V(H) \backslash D_{H}, \gamma(G) \neq 1, \gamma(H) \neq 1,\left|S_{G}\right| \geq 2$, and $\left|S_{H}\right| \geq 2$, then a subset $S \subseteq V(G+H) \backslash D$ is a secure inverse dominating set of $G+H$.
Proof: Suppose that $D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G), D_{H}=\{w\} \subset V(H), \gamma(G) \neq 1$, and $\gamma(H) \neq 1$. Then $D=\{v, w\}$ is a minimum dominating set of $G+H$. If $S=S_{G} \cup S_{H}$ where $S_{G} \subseteq V(G) \backslash D_{G}$ and $S_{H} \subseteq V(H) \backslash$ $D_{H},\left|S_{G}\right| \geq 2$, and $\left|S_{H}\right| \geq 2$, then S is an inverse dominating set of $G+H$ with respect to a minimum dominating set D of $G+H$. Let $u \in V(G+H) \backslash S$. If $u \in V(G) \backslash S_{G}$, then there exists $x \in S_{H} \subset S$ such that $u x \in E(G+H)$ and $(S \backslash\{x\}) \cup\{u\}$ is a dominating set of $G+H$ (since $\left|S_{H}\right| \geq 2$). Similarly, if $u \in V(H) \backslash S_{H}$, then there exists $x \in S_{G} \subset S$ such that $u x \in E(G+H)$ and $(S \backslash\{x\}) \cup\{u\}$ is a dominating set of $G+H$ (since $\left|S_{G}\right| \geq 2$). Thus, S is a secure dominating set of $G+H$, that is, S is a secure inverse dominating set of $G+H$. \square
The following result is the characterization of the secure inverse dominating set in the join of two graphs.
Theorem 2.16 Let G and H be connected non-complete graphs. Then a subset $S \subseteq V(G+H) \backslash D$, is a secure inverse dominating set of $G+H$ if and only if one of the following statements holds.
(i) D is a minimum dominating set of G with $|D| \leq 2$ and
a) S is an inverse dominating set of G with respect to D, or
b) $S=V(H)$ or S is a secure dominating set of H.
(ii)D $(|D| \leq 2)$ is a minimum dominating set of H and
a) S is an inverse dominating set of H with respect to D, or
b) $S=V(G)$ or S is a secure dominating set of G.
(iii) $D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G), D_{H}=\{w\} \subset V(H), \gamma(G) \neq 1, \gamma(H) \neq 1$, and
a) $S=V(G) \backslash D_{G}$ or $S=V(H) \backslash D_{H}$, or
b) $S \subset V(G) \backslash D_{G}$ is a secure dominating set ofG or $S \subset V(H) \backslash D_{H}$ is a secure dominating set of H.
(iv) $D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G), D_{H}=\{w\} \subset V(H)$, either D_{G} or D_{H} is a dominating set, $S=S_{G} \cup S_{H}$ where $_{G} \subset V(G)$ and $S_{H} \subset V(H)$, and $S_{G}=\{z\}$ is a dominating set of G and $S_{H}=\{x\}$ is a dominating set of H.
(v) $\quad D=D_{G} \cup D_{H}$ where $D_{G}=\{v\} \subset V(G)$ and $D_{H}=\{w\} \subset V(H)$, and $S=S_{G} \cup S_{H}$ where $S_{G} \subset V(G)$ andS $S_{H} \subset V(H), \gamma(G) \neq 1, \gamma(H) \neq 1$, and
a) $S_{G}=\{z\}$ and $\left\langle\left(V(H) \backslash N_{H}\left[S_{H}\right]\right)\right\rangle$ is a clique in H, or
b) $\left\langle\left(V(G) \backslash N_{G}\left[S_{G}\right]\right)\right\rangle$ is a clique in $G, S_{H}=\{x\}$, or

Volume - 09, Issue - 01, January 2024, PP - 105-112
c) $S_{G}=\{z\}$ and $\left\langle\left(V(G) \backslash N_{G}\left[S_{G}\right]\right)\right\rangle$ is a clique in $G, S_{H}=\{x\}$ and $\left\langle\left(V(H) \backslash N_{H}\left[S_{H}\right]\right)\right\rangle$ is a clique in H, or
d) $\left|S_{G}\right| \geq 2$ and $\left|S_{G}\right| \geq 2$.

Proof: Suppose that S is a secure inverse dominating set of $G+H$. Consider the following cases.
Case 1. Suppose that $D \cap V(H)=\emptyset$. Then $D \subseteq V(G)$. If $D=V(G)$, then $|D| \geq 3$ since G is a non-complete graph. This will contradict with the definition of D as a minimum dominating set of $G+H$ (see Remark 2.4). Thus, D must be a minimum dominating set of G with $|D| \leq 2$. Since G is connected non-complete graph, $V(G) \backslash D \neq \emptyset$. Let $S \subseteq V(G) \backslash D$, that is, S is an inverse dominating set of G with respect to D. This shows statement (i)a). If $S \subseteq V(H)$, then $S=V(H)$ or $S \subset V(H)$. Since S is a secure inverse dominating set of $G+H$, it follows that S is a secure dominating set of H. This shows statement (i)b).
Case 2. Suppose that $D \cap V(G)=\emptyset$. Then $D \subseteq V(H)$. If $D=V(H)$, then $|D| \geq 3$ since H is a non-complete graph. This will contradict with the definition of D as minimum dominating set of $G+H$ (see Remark 2.4). Thus, D must be a minimum dominating set of H with $|D| \leq 2$. Since H is connected non-complete graph, $V(H) \backslash D=\emptyset$. If $S \subset V(H)$, then $S=V(H) \backslash D$, that is, S is an inverse dominating set of H with respect to D. This shows statement (ii)a). If $S \subseteq V(G)$, then $S=V(G)$ or $S \subset V(G)$. Since, S is a secure inverse dominating set of $G+H$, it follows that S is a secure dominating set of G. This shows statement (ii)b).
Case 3. Suppose that $D \cap V(G) \neq \emptyset$ and $D \cap V(H) \neq \emptyset$. Let $D_{G}=D \cap V(G)$ and $D_{H}=D \cap V(H)$. Then

$$
\begin{aligned}
D_{G} \cup D_{H} & =(D \cap V(G)) \cup(D \cap V(H)) \\
& =D \cap(V(G) \cup V(H)) \\
& =D \cap V(G+H) \\
& =D .
\end{aligned}
$$

By Remark 2.4, the minimum dominating set of $G+H$ is either 1 or 2 . Let $D_{G}=\{v\}$ and $D_{H}=\{w\}$.
Subcase 1. If $S \cap V(H)=\emptyset$, then $S \subseteq V(G) \backslash D_{G}$. If $S=V(G) \backslash D_{G}$, then this satisfies statement (iii)a). If $S \subset V(G) \backslash D_{G}$, then statement (iii)b) is satisfied since S is a dominating set of $G+H$, that is, S is a dominating set of G.
Subcase 2. If $S \cap V(G)=\emptyset$, then $S \subseteq V(H) \backslash D_{H}$. If $S=V(H) \backslash D_{H}$, then this satisfies statement (iii)a). If $S \subset V(H) \backslash D_{H}$, then statement (iii)b) is satisfied since S is a dominating set of $G+H$, or S is a dominating set of H.
Subcase 3. If $S \cap V(G) \neq \varnothing$ and $S \cap V(H) \neq \emptyset$, then let $S_{G}=S \cap V(G)$ and $S_{H}=S \cap V(H)$, that is, $S_{G} \subset V(G)$ and $S_{H} \subset V(H)$. Now,

$$
\begin{aligned}
S_{G} \cup S_{H} & =(S \cap V(G)) \cup(S \cap(V(H)) \\
& =S \cap(V(G) \cup V(H)) \\
& =S \cap V(G+H) \\
& =S .
\end{aligned}
$$

Thus, $S=S_{G} \cup S_{H}$ where $S_{G} \subset V(G)$ and $S_{H} \subset V(H)$.
If $S_{G}=\{z\}$ is a dominating set of G and $S_{H}=\{x\}$ is a dominating set of H, then the proofof statement (iv) is done.

If $S_{G}=\{z\}$ and S_{H} is not a dominating set of H with $|V(H)| \geq 2$. Then there exists $u \in V(H) \backslash S_{H}$ such that, $x u \notin E(H)$ for all $x \in S_{H}$. Since $S=S_{G} \cup S_{H}$ is a secure dominating set of $G+H$, for all $u \in$ $V(G+H) \backslash S$, there exists $v \in S$ such that $u v \in E(G+H)$ and $(V(G+H) \backslash\{v\}) \cup\{u\}$ is a dominating set of $G+H$. This is clearly true if $v=z$, or $v \in S_{H}$ and $u \in N_{H}[v]$. However, since S_{H} is not a dominating set of H, if $v \in S_{H}$ and $u \notin N_{H}[v]$, then $\{u\} \subseteq V(H) \backslash N_{H}[v]$ must be a dominating set of $\left\langle V(H) \backslash N_{H}[v]\right\rangle$ for all $u \in$ $V(H) \backslash N_{H}[v]$. This implies that the induced subgraph $\left\langle V(H) \backslash N_{H}[v]\right\rangle$ of $V(H) \backslash N_{H}[v]$ is a clique in H. This satisfies(v)a).

If $S_{H}=\{x\}$ and S_{G} is not a dominating set of G with $|V(H)| \geq 2$. Then there exists $u \in V(G) \backslash S_{G}$ such that $z u \notin E(H)$ for all $z \in S_{G}$. Since $S=S_{G} \cup S_{H}$ is a secure dominating set of $G+H$, for all $u \in V(G+H) \backslash S$, there exists $v \in S$ such that $u v \in E(G+H)$ and $(V(G+H) \backslash\{v\}) \cup\{u\}$ is a dominating set of $G+H$. This is clearly true if $v=x$, or $v \in S_{G}$ and $u \in N_{G}[v]$. However, since S_{G} is not a dominating set of G, if $v \in S_{G}$ and $u \notin N_{G}[v]$, then $\{u\} \subseteq V(G) \backslash N_{G}[v]$ must be a dominating set of $\left\langle V(G) \backslash N_{G}[v]\right\rangle$ for all $u \in V(G) \backslash N_{G}[v]$. This implies that the induced subgraph $\left\langle V(G) \backslash N_{G}[v]\right\rangle$ of $V(G) \backslash N_{G}[v]$ is a clique in G. This satisfies (v)b).

If $S_{G}=\{z\}$ and $S_{H}=\{x\}$, then S_{G} and S_{H} are not dominating sets of G and Hrespectively (since $\gamma(G) \neq$ 1 and $\gamma(H) \neq 1)$. Thus, there exists $u \in V(G) \backslash S_{G}$ such that $z u \notin E(G)$ for all $z \in S_{G}$ and there exists $u \in$ $V(H) \backslash S_{H}$ such that $x u \notin E(H)$ for all $x \in S_{H}$. Since $S=S_{G} \cup S_{H}$ is a secure dominating set of $G+H$, for all $u \in V(G+H) \backslash S$, there exists $v \in S$ such that $u v \in E(G+H)$ and $(V(G+H) \backslash\{v\}) \cup\{u\}$ is a dominating set of $G+H$. Since S_{G} is not a dominating set of G, if $v=z$ and $u \notin N_{G}[v]$, then $\{u\} \subseteq V(G) \backslash N_{G}[v]$ must be a

Volume - 09, Issue - 01, January 2024, PP - 105-112
dominating set of $\left\langle V(G) \backslash N_{G}[v]\right\rangle$ for all $u \in V(G) \backslash N_{G}[v]$. This implies that the induced subgraph $\langle V(G) \backslash$ $\left.N_{G}[v]\right\rangle$ of $V(G) \backslash N_{G}[v]$ is a clique in G. Further, since S_{H} is not a dominating set of H, if $v=x$ and $u \notin N_{H}[v]$, then $\{u\} \subseteq V(H) \backslash N_{H}[v]$ must be a dominating set of $\left\langle V(H) \backslash N_{H}[v]\right\rangle$ for all $u \in V(H) \backslash N_{H}[v]$. This implies that the induced subgraph $\left\langle V(H) \backslash N_{H}[v]\right\rangle$ of $V(H) \backslash N_{H}[v]$ is a clique in H. This satisfies (v)c).

Finally, if $\{z\} \subset S_{G}$ and $\{x\} \subset S_{H}$, then $\left|S_{G}\right| \geq 2$ and $\left|S_{H}\right| \geq 2$. This satisfies (v)d).
For the converse, suppose that statement (i)a) is satisfied. Then by Lemma $2.5, S$ is a secure inverse dominating set of $G+H$.

Suppose that statement (i)b) is satisfied. Then by Lemma $2.6, S$ is a secure inverse dominating set of $G+H$.

Suppose that statement (ii)a) is satisfied. Then by Lemma 2.7, S is a secure inverse dominating set of $G+H$.

Suppose that statement (ii)b) is satisfied. Then by Lemma $2.8, S$ is a secure inverse dominating set of $G+H$.

Suppose that statement (iii)a) is satisfied. Then by Lemma $2.9, S$ is a secure inverse dominating set of $G+H$.

Suppose that statement (iii)b) is satisfied. Then by Lemma $2.10, S$ is a secure inverse dominating set of $G+H$.

Suppose that statement (iv) is satisfied. Then by Lemma $2.11, S$ is a secure inverse dominating set of $G+H$.

Suppose that statement (v)a) is satisfied. Then by Lemma 2.12, S is a secure inverse dominating set of $G+H$.

Suppose that statement (v)b) is satisfied. Then by Lemma 2.13, S is a secure inverse dominating set of $G+H$.

Suppose that statement (v)c) is satisfied. Then by Lemma 2.14, S is a secure inverse dominating set of $G+H$.

Suppose that statement (v)d) is satisfied. Then by Lemma 2.15, S is a secure inverse dominating set of $G+H$. This completes the proofs. \square
The following result is a quick consequence of Theorem 2.16.
Corollary 2.17Let G and H be connected non-complete graphs.

$$
\gamma_{s}^{(-1)}(G+H)= \begin{cases}2, & \text { if } \gamma(G)=1 \text { and } \gamma_{s}(H)=2 \\ 3, & \text { if }\left|S_{G}\right|=2 \text { and }\left\langle\left(V(G) \backslash S_{G}\right) \backslash N_{G}\left(S_{G}\right)\right\rangle \text { is a clique in } G\end{cases}
$$

Proof: Suppose that $\gamma(G)=1$ and $\gamma_{s}(H)=2$. Let D be a minimum dominating set of G with $|D|=1$ and S is a secure dominating set of H. Then by Theorem $2.16(\mathrm{i}) \mathrm{b}, S$ is a secure inverse dominating set of $G+H$. Thus, $\gamma_{s}^{(-1)}(G+H) \leq|S|$. Given that $\gamma_{s}(H)=2$, let S be a minimum secure dominating set of H. Then

$$
|S|=2=\gamma_{s}(H) \leq \gamma_{s}(G+H) \leq \gamma_{s}^{(-1)}(G+H) \leq|S| .
$$

This implies that $\gamma_{s}^{(-1)}(G+H)=2$.
Suppose that $\left|S_{G}\right|=2$ and $\left\langle\left(V(G) \backslash S_{G}\right) \backslash N_{G}\left(S_{G}\right)\right\rangle$ is a clique in G. Let $S_{H}=\{x\}$. By Theorem 2.16(v)b, S is a secure inverse dominating set of $G+H$. Thus, $\gamma_{s}^{(-1)}(G+H) \leq|S|$. Let $S_{G}=\{v, z\}$. Then $S=\{v, z, x\}$, that is, $\gamma_{s}^{(-1)}(G+H) \leq|S|=3$. Since, $\gamma(G) \neq 1$ and $\gamma(H) \neq 1$ by Theorem 2.16(v)b, it follows that $\gamma(G+$ $H)=2$ by Remark 2.4. Suppose that $S=\{v, x\}$ is a secure dominating set of $G+H$. Since $S_{H}=\{x\}$ is not a dominating set of H, there exists $w \in V(H) \backslash S_{H}$ such that $w x \notin E(H)$ and $(S \backslash\{v\}) \cup\{w\}=\{x, w\}$ is not a dominating set of H and of $G+H$. Thus, $\gamma_{s}(G+H) \neq 2$, that is, $\gamma_{s}(G+H) \geq 3$. By computation,

$$
\text { Hence, } \gamma_{s}^{-1}(G+H)=3 . \square \quad 3 \leq \gamma_{s}(G+H) \leq \gamma_{s}^{(-1)}(G+H) \leq 3
$$

III. CONCLUSION

In this paper, a new parameter of domination in graphs was introduced - the secure inverse domination in graphs. The secure inverse domination in the join of two graphs were characterized. Moreover, the exact secure inverse domination number resulting from the join of two graphs were computed. This study will pave a way to new researches such as bounds and other binary operations of two connected graphs. Identifying the characterization of secure inverse domination in graphs of the corona, Cartesian product, and lexicographic product are promising extensions of this study. Finally, other parameters involving secure inverse domination in graphsmay also be explored.

Volume - 09, Issue - 01, January 2024, PP - 105-112

IV. ACKNOWLEDGEMENTS

This research is funded by the Department of Science and Technology - Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP).

REFERENCES

[1]. O. Ore, Theory of Graphs.(American Mathematical Society, Providence, R.I., 1962).
[2]. E.J. Cockayne, and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks, 1977, 247261.
[3]. M.D. Garol, E.L. Enriquez, K.E. Belleza, G.M. Estrada, and C.M. Loquias, Disjoint Fair Domination in the Join and Corona of Two Graphs, International Journal of Mathematics Trends and Technology, 68(2), 2022, pp. 124-132.
[4]. DH. P. Galleros, and E.L. Enriquez, Fair Restrained Dominating Set in the Cartesian Product and Lexicographic Product of Graphs, International Journal of Mathematics Trends and Technology, 67(7), 2021, pp. 87-93.
[5]. E.L. Enriquez, Super Fair Dominating Set in Graphs, Journal of Global Research in Mathematical Archives, 6(2), 2019, pp. 8- 14.
[6]. E.L. Enriquez, Convex Doubly Connected Domination in Graphs Under Some Binary Operations, Ansari Journal of Ultra Scientist of Engineering and Management, 1(1), 2017, pp. 13-18.
[7]. R.T. Aunzo, and E.L. Enriquez, Convex Doubly Connected Domination in Graphs, Applied Mathematical Sciences, 9(135), 2015, pp. 6723-6734.
[8]. SP.G. Cajigas, E.L. Enriquez, K.E. Belleza, G.M. Estrada, and C.M. Loquias, Disjoint Restrained Domination in the Join and Corona of Graphs, International Journal of Mathematics Trends and Technology, 67(12), 2021, pp. 57-61.
[9]. E.J. Cockayne, O. Favaron and C.M. Mynhardt, Secure domination, weak Roman domination and forbidden subgraphs, Bull. Inst. Combin. Appl. 39, 2003, 87-100.
[10]. E.J. Cockayne, Irredundance, secure domination and maximum degree in trees, Discrete Math, vol. 307, 2007, pp. 12-17.
[11]. E.L. Enriquez, and S.R. Canoy, Jr. Secure convex domination in a graph, International Journal of Mathematical Analysis, 9 (7), pp.317-325. http://dx.doi.org/10.12988/ajma.2015.412412
[12]. E.L. Enriquez, Secure convex dominating sets in corona of graphs, Applied Mathematical Sciences, vol. 9, no. 120, 2015, 5961- 5967. http://dx.doi.org/10.12988/ams.2015.58510 15
[13]. HL.M. Maravillas, and E.L. Enriquez, Secure Super Domination in Graphs, International Journal of Mathematics Trends and Technology, 67(8), 2021, pp. 38-44.
[14]. M.P. Baldado, Jr., and E.L. Enriquez, Super Secure Domination in Graphs, International Journal of Mathematical Archive, 8(12), 2017, pp. 145-149.
[15]. E.L. Enriquez, Secure Restrained Convex Domination in Graphs, International Journal of Mathematical Archive, vol. 8, no. 7, 2017, 1-5.
[16]. C.M. Loquias, and E.L. Enriquez, On Secure Convex and Restrained Convex Domination in Graphs, International Journal of Applied Engineering Research, vol. 11, no. 7, 2016, 4707-4710.
[17]. E.L. Enriquez, and E.S. Enriquez, Convex Secure Domination in the Join and Cartesian Product of Graphs, Journal of Global Research in Mathematical Archives, 6(5), 2019, pp. 1-7.
[18]. V.R. Kulli, and S.C. Sigarkanti, Inverse domination in graphs, Nat. Acad. Sci. Letters, 14, 1991, 473-475.
[19]. E.M. Kiunisala and F.P. Jamil, Inverse domination numbers and disjoint domination numbers of graphs under somebinary operations, Applied Mathematical Sciences, vol. 8, no. 107, 2014, 5303-5315.
[20]. T. Tamizh Chelvan, T. Asir, and G.S. Grace Prema, Inverse domination in graphs, Lambert Academic Publishing, 2013.
[21]. E.M. Kiunisala, and E.L. Enriquez, Inverse Secure Restrained Domination in the Join and Corona of Graphs, International Journal of Applied Engineering Research, vol. 11, no. 9, 2016, 6676-6679.
[22]. J.A. Ortega, and E.L. Enriquez, Super Inverse Domination in Graphs, International Journal of Mathematics Trends and Technology, 67(7), 2021, pp. 135-140.
[23]. E.L. Enriquez, Inverse fair domination in the join and corona of graphs, Discrete Mathematics, Algorithms and Applications, 16(01), 2024, 2350003.
[24]. T.J. Punzalan, and E.L. Enriquez, Inverse Restrained Domination in Graphs, Global Journal of Pure and Applied Mathematics, vol. 3, 2016, pp. 1-6.
[25]. D.P. Salve, and E.L. Enriquez, Inverse Perfect Domination in the Composition and Cartesian Product of Graphs, Global Journal of Pure and Applied Mathematics, 12(1), pp. 1-10, 2016.
[26]. G. Chartrand, and P. Zhang. A First Course in Graph Theory.(Dover Publication, Inc., New York, 2012).

