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Abstract: This study investigates the interpolation system parameter-free conical radial basis function 

algorithm. The effective condition number (ECN) is considered. The main difference between ECN and the 

traditional condition numbers is in that the ECN takes into account the right-hand side vector to estimates 

system stability. Even the ECN is a superior criterion over the traditional condition number for some numerical 

methods, it is not obvious for the conical radial basis function algorithm. Numerical results show that the ECN 

is not roughly inversely proportional to the numerical accuracy. 
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1. Introduction  
The radial basis functions based (RBF-based) meshless collocation methods perform well for 

interpolating multidimensional scattered data during the past several decades [1, 2]. They have been used to deal 

with many problems governed by the partial differential equations [3-5].   

The conical radial basis functions method is proposed Zhang et al [6]. The Chebyshev node generation is 

considered for the solution of boundary value problems governed by the partial differential equations. The 

collocation points are placed uniformly or quasi-uniformly in the physical domain of the boundary value 

problems in question. Three different simple Chebyshev-type schemes are employed to generate the collocation 

points. This scheme improves accuracy of the method with no additional computational cost. Several numerical 

experiments are given to show the validity of the newly-proposed method.   

In this paper, we make the attempt to investigate the interpolation system parameter-free conical radial 

basis functions, where the effective condition number (ECN) is also considered to see the stability analysis of 

parameter-free conical radial basis functions. 

 

2. The Conical Radial Basis Functions Method 
To make a brief description, we give restatement of the boundary value problems for elliptic partial 

differential equation of second order 
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Where 
2R   is a 2D physical domain, ( )u P  and ( )q P  are the prescribed Dirichlet and Neumann 

boundary conditions, with D N    , D N    . 

The basic theory of the conical radial basis function method is similar with the other RBF-based 

collocation method, i.e., the numerical solution of the BVP (1)-(3) can be derived by the following general 

formulation 
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Where M  is the total number of source points 1 2, ,..., MP P P  on the whole physical domain 

    , and 1 2, ,..., M    are the unknown coefficients,  
2

m

j jP P r    is the conical radial 

basis function， m  is a positive odd integer in the conical radial basis function, jr  is the Euclidean norm 

distance between points ( , )P x y  and ( , )j j jP x y .  

We denote 
1 2, ,...,

IMP P P
 the collocation points inside the domain  , 

1 2, ,...,
DMP P P

 the collocation 

points on the Dirichlet boundary 
D

 and 
1 2, ,...,

NMP P P
 the collocation points on the Neumann boundary 

N
 

with the total collocation number 
I D NM M M M  

. The generation of collocation points are generated 

by the Chebyshev-type schemes in the following section [6]. 

 

3. The Chebyshev-Type Schemes 
The key point of the new conical radial basis function method is to use the non-uniformly distributed 

Chebyshev-type schemes, which is generated in the interval. The computational cost remains the same as the 

traditional conical radial basis function method and there is no need to consider the fictitious points. The definite 

generations on each direction of the physical domains for three Chebyshev-type nodes are shown as below. 

 

The Chebyshev-Gauss Scheme 
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The Chebyshev-Gauss-Radau Scheme 
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The Chebyshev-Gauss-Lobatto Scheme 
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The main differences among these three newly-proposed schemes lie in the position of the collocation 

points. The figures of the three schemes will be shown in the following numerical section to verify the 

performance of the proposed schemes. 

 

4. Numerical implementation 
By forcing Equation (4) to satisfy Equations (1)-(3) at all collocation points, we have the following 

equations. 
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This procedure is the same for the traditional source points and the source points generated by the 

Chebyshev-type schemes (5)-(7). 
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5. Measurement of Interpolation Matrix Conditioning 

The 
2L   condition number of a nonsingular square matrix A  in Eqs. (8)-(10) is defined by matrix norm 

1Cond( )A A A  . The matrix can be decomposed by using singular value decomposition 
TA UDV  

with diagonal matrix D  including diagonal elements 1 2, ,..., 0N    . 

If matrix system is perturbed as ( )A x x b b     , we can get 

1

N

i i

i

b u


 , where 

, 1, 2,...,iu i N  are the elements of U . The effective condition number can be defined as [7]. 
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6. Numerical Example 
To seek for the influence of noise, the boundary conditions are considered by adding random number 

,u u q q     . We use the random number generator to provide random numbers in [-1,1] and suppose 

Rand   .  

To measure the accuracy, we compute the relative average errors of the exact and approximate solutions. 

The exact solution of (1)-(3) is taken as 
2 21 1

( , ) ( )
2 4

u x y x y x y     . The physical domain is 

2 1    with outer boundary 2 [ 2,2] [ 2,2]      and inner boundary 1 [ 1,1] [ 1,1]      with 

Dirichlet boundary. Here, we take the Chebyshev-Gauss Scheme (CGS) as an example to illustrate the 

numerical results. The total collocation point number for the CGS is 348M  with corresponding 

computational point number 1028tN  . 

It is seen from Table 1 that for different noise level  , the ECN increases while the Relative average 

errors and traditional condition numbers remain at the same level. This phenomenon is different with the other 

numerical methods. This may partially suggest the stability of the conical radial basis function method under the 

Chebyshev-Gauss Scheme. 

 

Table 1: Relative average errors (RAE), condition numbers, effective condition numbers for the Chebyshev-

Gauss Scheme (CGS) 

 RAE Condition number ECN 

noise   344 361 348 

0.5 82.60 10  
137.92 10  25.48 

0.1 82.60 10  
137.92 10  96.70 

0.05 82.60 10  
137.92 10  148.79 

0.01 82.60 10  
137.92 10  153.04 

0.005 82.60 10  
137.92 10  559.83 

0.001 82.60 10  
137.92 10  

35.35 10  

 

7. Conclusions  
In this paper, the parameter-free conical radial basis function method is investigated under three different 

Chebyshev-type Schemes. The effective condition number is considered to evaluate the interpolation system of 

the conical radial basis function collocation method. The numerical results show that the effective condition 

number is not a better choice to evaluate the interpolation system. This is different with the other numerical 

methods. 
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