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v e V(G)\S, there exists x €S such that xv € E(G). A set D € V(G) is said to be an outer-connected
dominating set in G if D is dominating and either D = V(G) or (V(G) \ D) is connected. Let D be a minimum
dominating set of G. A nonempty subset S € V(G) \ D is an outer-connected inverse dominating set of G if S is
an inverse dominating set with respect to D and the subgraph (V(G) \ S ) induced by V(G) \ S is connected. The
outer connected inverse domination number of G, is denoted byy. " (G), that is, the minimum cardinality of an

outer connected inverse dominating set of G. In this paper, we initiate the study of the concept, and give the
outer-connected inverse domination number of some special graphs. Further, we give the characterization and
domination number of the outer-connected inverse dominating set in the corona of two nontrivial connected
graphs.
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1. Introduction

Domination in graph was introduced by Claude Berge in 1958 and Oystein Ore in 1962 [1]. Following an
article [2] by Ernie Cockayne and Stephen Hedetniemi in 1977, the domination in graphs became an area of
study by many researchers. A subset S of V(G) is a dominating set of Gif for every v € V(G) \ S, there exists
x € S such that xv € E(G), i.e., N[S] = V(G). The domination numbery(G) of G is the smallest cardinality of
a dominating set of G. Some studies on domination in graphs were found in the papers [3, 4,5, 6, 7, 8, 9, 10, 11,
12, 13].

A set S of vertices of a graph G is an outer-connected dominating set if every vertex not inS is adjacent to
some vertex in S and the sub-graph induced byV (G) \ S is connected. The outer-connected domination number
7.(G) is the minimum cardinality of the outer-connected dominating set S of a graph G. The concept of outer-
connected domination in graphs was introduced by Cyman [14]. Some related studies of outer-connected
domination in graphs are found in [15, 16, 17, 18, 19, 20, 21].

Let D be a minimum dominating set in G. The dominating set S < V(G) \ Dis called an inverse
dominating set with respect to D. The minimum cardinality of an inverse dominating set is called an inverse
domination number of G and is denoted by y~1(G). An inverse dominating set of cardinalities y =1 (G)is called
y~!- set of G. The inverse domination in a graph was first found in the paper of Kulli [22] and can be read in
the papers [23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

Motivated by the introduction of the outer-connected dominating sets and the inverse dominating sets, a
new variant of domination in graphs is introduced in this paper. Let D be a minimum dominating set of G. A
nonempty subset S € V(G) \ D is an outer connected inverse dominating set of G, if S is an inverse dominating
set with respect to D and the subgraph (V(G) \ S) induced by V(G) \ S is connected. The outer connected

inverse domination number of G, is denoted by VC(_l)(G), that is the minimum cardinality of an outer
connected inverse dominating set of G. In this paper, we initiate the study of the concept and give the outer-
connected inverse domination number of some special graphs. Further, we show the characterization of the
outer-connected inverse dominating set in the join of two nontrivial connected graphs.

For the general terminology in graph theory, readers may refer to [33]. A graph G is a pair (V(G), E(G)),
where V(G) is a finite nonempty set called the vertex-set of G and E(G) is a set of unordered pairs {u, v} (or
simply uv) of distinct elements from V(G) called the edge-set of G. The elements of VV(G) are called vertices
and the cardinality |V (G)|of V(G) is the order of G. The elements of E(G) are called edges and the cardinality
|E(G)| of E(G) is the size of G. If [V (G)| = 1, then G is called a trivial graph. If E(G) = @ , then G is called an
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empty graph. The open neighborhood of a vertex v € V(G) is the set N;(v) = {u € V(G) : uv € E(G)}. The
elements of N; (v) are called neighbors of v. The closed neighborhood of v € V(G)is the set N;[v] = N;(v) U
{v}.If X € V(G), the open neighborhood of X in G is the set N; (X) = U,ex Ng (v). The closed neighborhood of
X in G is the set N;[X] = Uyex N;g[v] = N;(X) U X. When no confusion arises, N;[x] [res. N;(x)] will be
denoted by N[x] [resp. N(x)].

2. Results
Definition 2.1 A simple graphGis an undirected graph with no loop edges or multiple edges.

Definition 2.2 The pathP, = {a;a,a;..a,} is the graph with V(P,) = {a;,a,,a3,...,a,}and E(P,) =
{a;ay,azas,...,a,_qa,}

Definition 2.3The cycle C, = {a;a,a;...a,a,} is the graph with V(C,) = {a;,a,,as,...,a,} and E(C,) =
{aja3,a5a3,...,a,a1}.

Definition 2.4A graph K, = (V(K,), E(K,)) is called a complete graph of order n when xy is an edge in K, for
every distinct pair x,y € V(K,).

Definition 2.5 A complete bipartite graph is a graph whose vertex set can be partitioned into V; and V, such that
every edge joins a vertex in V; with a vertex in V,, and every vertex in V; is adjacent with every vertex in V,.

1, ifn=3
Proposition 2.6 Let G = C,,. Then \72_1) = 2, ifn=4
none, ifn>75

Proof: Suppose that G = C,,. Let V(C,) = {x1, %3, ..., x,,}. If n =3, then the set D = {x;} is a minimum
dominating set of C; and S = {x,} is a minimum inverse dominating set of C; with respect to a minimum
dominating set D. Since the subgraph induced by V(C3) \ S = {x;,x,} is connected, it follows that S is a

minimum outer-connected inverse dominating set of C;. Hence, )70(_1)(63) = |S| = 1. If n = 4, then the set
D = {x;,x,} is a minimum dominating set of C, with respect to a minimum dominating set D. Since the
subgraph induced by V(C,) \ S = {x, x,} is connected, it follows that S is a minimum outer-connected inverse
dominating set of C,. Hence, }70(_1)(C4) =|S| =2.If n =5, say n = 5, then the set D = {x;, x5} is @ minimum
dominating set of Cs and S = {x,, x4} is @ minimum inverse dominating set of Cs with respect to a minimum
dominating set D. Since the subgraph induced by V(Cs) \ S = {x, x5, x5} is not connected, it follows that S is
not an outer-connected dominating set of Cs. Hence, the outer-connected inverse dominating set in Cs is none.
Similarly, if n > 5, then the outer-connected inverse dominating set in C,, is none. m

1, ifn=2
Proposition 2.7 Let G = P,. Then )76(_1) = 2, ifn=30rn=4
none, ifn>=5

Proof. Suppose that G = B,. Let V(B,) = {x1, %y, ..., x,}. If n =2, then the set D = {x;} is a minimum
dominating set of P_2 and S = {x,} is a minimum inverse dominating set of P, with respect to a minimum
dominating set D. Since the subgraph induced by V(P,) \ S = {x;} is trivially connected, it follows that S is a

minimum outer-connected inverse dominating set of P,. Hence, )76(_1)(P2) = |S| = 1. If n = 3, then the set
D = {x,} is a minimum dominating set of P; and S = {x;, x3} is @ minimum inverse dominating set of P; with
respect to a minimum dominating set D. Since the subgraph induced by V(P;) \ S = {x,} is trivially connected,

it follows that S is a minimum outer-connected inverse dominating set of P;. Hence, )76(‘1)(P3) =S| =2.If
n = 4, then the set D = {x;,x3} is @ minimum dominating set of P, and S = {xy, x4} is @ minimum inverse
dominating set of P, with respect to a minimum dominating set D. Since the subgraph induced by V(P,) \ S =

{x,, x5} is connected, it follows that S is an outer-connected dominating set of P4. Hence, Vc(_l)(P4) =|S| = 2.
If n =5, then the set D = {x,, x5} is a minimum dominating set of P;and S = {x;, x,} is @ minimum inverse
dominating set of P; with respect to a minimum dominating set D. Since the subgraph induced by V(P;) \ S =
{x,, x5, x5} is not connected, it follows that S is not an outer-connected dominating set of P; .Hence, the outer-
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connected inverse dominating set in Ps is none. Similarly, if n > 5, then the outer-connected inverse dominating
setin B, is none.m

Remark 2.8 Let G be a special graph.
i.  ifG=K, then7"P(6) =1, vn>2
i. ifG=S,then? " P(G)=n wvn>1
iii.  ifG =K, then7"V(G) =2, vmn=2

Definition 2.9 Let G and H be graphs of order m and n, respectively. The corona of two graphs G and H is the
graph G o H obtained by taking one copy of Gand m copies of H, and then joining the it h vertex of G to every
vertex of the it h copy of H. The join of vertex v of G and a copy H” of H in the corona of G and H is denoted
by v+ H".

The following result give the characterization of an outer-connected inverse domination in the corona of
two graphs.

Theorem 2.10 LetG and H be nontrivial connected graphs. The subset S ¢ V(G o H) is an outer-connected
inverse dominating set of G o H , if one of the following conditions is satisfied.
i.  S= (Ypevey V(HY) \ D)), where D = {y} is a dominating set of H” for each v € V(G).
ii. S = (Upey) SH), where Sj c V(H") \ D" is a dominating set of H”, DV = {y} is a dominating set of
HY foreach v € V(G).
iii. S = Uyer(c) Si» Where Sjj is a dominating set of H” for each v € V(G).

Proof. Suppose that statement (i) is satisfied. Then S = U ¢y () (V(HY) \ DV), where D = {y} is a dominating
set of HY for each v € V(G). This implies that V(H") \ D" is a dominating set of H” for each v € V(G).
Clearly, D = U,ey g D7 is @ minimum dominating set of G o H and S = U,ey gy (V(HY) \ D) is a dominating
setof Go H. Thus, V(G o H)\D =V(G) U (U,,EV(G) (V(H") \ D”)) is an inverse dominating set of G o H with
respect to a minimum dominating set D. Since S = U,ey ) (V(H”) \ D”) € V(G » H) \ D, it follows that S is
an inverse dominating set of G o H with respect to a minimum dominating set D. Since S = U,ey ) (V(HY) \
DV), it follows that for each u ¢ S, there exists v € V(G) € S such that uv € E(G o H). Thus, the subgraph
induced by V(G o H) \ S is connected. Hence S is an outer-connected dominating set of G o H. Accordingly, S
is an outer-connected inverse dominating set of G o H.

Suppose that statement (ii) is satisfied. Then S = U,ey gy S, where Sf ¢ V(H") \ D" is a dominating
set of HY , DV = {y} is a dominating set of H" for each v € V(G). By using similar arguments in the proof of
statement (i), D = U,ep g DV is @ minimum dominating set of G o H andS = U,y 6y Sg is @ dominating set of
GoH.Thus, V(GeH)\D =V(G) U (U,,EV(G) (V(H") \ D"))is an inverse dominating set of G o H with
respect to a minimum dominating set D. SinceS = U,ey ) S§ © (V(H”) \ D) is a dominating set of G o H, it
follows that S is an inverse dominating set of G o H with respect to a minimum dominating set D. SinceS =
Uyer(g) SH, it follows that for each u & S, there exists v € V(G) € S such that uv € E(G o H). Thus, the
subgraph induced by V(G o H) \ S is connected. Hence S is an outer-connected dominating set of G o H.
Accordingly, S is an outer-connected inverse dominating set of G o H.

Suppose that statement (iii) is satisfied. S = U,ey () S§, where Sf is a dominating set of H” for each v €
V(G). Let D = V(G). Then D is a minimum dominating set of G o H and V(G e H) \ D = U,¢y () V(H")is an
inverse dominating set of G o Hwith respect to a minimum dominating set D. Since S = U,ey g Si S
Uyev () V(HY), it follows that S is an inverse dominating set of G o H with respect to a minimum dominating
set D. If Sy = V(H") for each v € V(G), then S = U,¢y ) V(H"). Since for eachv € V(G) € S, there exists
distinctv’ € V(G) such that uv' € E(G o H). Thus, the subgraph induced by V(G o H) \ S is connected. Hence
S is an outer-connected dominating set of G o H. Accordingly, S is an outer-connected inverse dominating set of
G o H. Similarly, ifSj c V(HV) where S} is a dominating set for each v € V(H), then S is an outer-connected
inverse dominating set of G o H.m

The following result is an immediate consequence of Theorem 2.10.

Corollary 2.11 Let G and H be nontrivial connected graphs. Then )76(_1)(6 oH) =|V(G)| - y(H).
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Proof. Suppose that S = U,y 6y Sf, Where Sy is a dominating set of H¥for each v € V(G). Then by Theorem
2.10, S is an outer-connected inverse dominating set of G o H. This implies that
706 o H) < 181 = [Usevio) SH| = Zoeri@ISH1 = V(@)1 - ISy],
that is, VC(_l)(G o H) < |V(G)] - |Sy|, for all dominating set S, of H. Since y(H) < |Sy|, it follows that
V()| -y(H) < |V(G)] - |Sy] for all dominating set Sy of H.
thatis, 7. (G o H) = [V(G)] - y(H) < [V(G)] - ISy|. m

3. Conclusion

In this work, we introduced a new parameter of domination in graphs - the outer-connected inverse
domination in graphs. The outer-connected inverse domination in the corona of two graphs were characterized.
The exact outer-connected inverse domination number resulting from this binary operation of two graphs were
computed. This study will pave a way to new research such bounds and other binary operations of two graphs.
Other parameters involving outer-connected inverse domination in graphs may also be explored. Finally, the
characterization of an outer-connected inverse domination in graphs and its bounds is a promising extension of
this study.
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